Neural network quantification method and device and neural network reasoning method and system
The invention relates to a neural network quantification method and device and a neural network reasoning method and system in the technical field of information processing. The method comprises the following steps: setting a reasoning precision threshold value of a neural network; separating and qu...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | WU CHUNXUAN |
description | The invention relates to a neural network quantification method and device and a neural network reasoning method and system in the technical field of information processing. The method comprises the following steps: setting a reasoning precision threshold value of a neural network; separating and quantizing each layer of output feature data quantization parameter and each layer of weight quantization parameter; for the front and back associated layers in the neural network, updating the output feature data quantization parameter of the input layer according to the output feature data quantization parameter of the current layer; and by taking the reasoning precision threshold as a constraint condition, according to a comparison result of each layer of reasoning floating point value and the separated and quantized fixed point value, optimizing and outputting a characteristic data quantization parameter. And executing a fixed-point reasoning process of each network layer by using a coprocessor in the Soc chip. A |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN114386588A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN114386588A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN114386588A3</originalsourceid><addsrcrecordid>eNrjZIjzSy0tSsxRyEstKc8vylYoLE3MK8lMy0xOLMnMz1PITS3JyE9RSMxLUUhJLctMTgUz81D1FKUmFufnZealIysvriwuSc3lYWBNS8wpTuWF0twMim6uIc4euqkF-fGpxQWJyalAU-Kd_QwNTYwtzEwtLByNiVEDAIzMPTQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Neural network quantification method and device and neural network reasoning method and system</title><source>esp@cenet</source><creator>WU CHUNXUAN</creator><creatorcontrib>WU CHUNXUAN</creatorcontrib><description>The invention relates to a neural network quantification method and device and a neural network reasoning method and system in the technical field of information processing. The method comprises the following steps: setting a reasoning precision threshold value of a neural network; separating and quantizing each layer of output feature data quantization parameter and each layer of weight quantization parameter; for the front and back associated layers in the neural network, updating the output feature data quantization parameter of the input layer according to the output feature data quantization parameter of the current layer; and by taking the reasoning precision threshold as a constraint condition, according to a comparison result of each layer of reasoning floating point value and the separated and quantized fixed point value, optimizing and outputting a characteristic data quantization parameter. And executing a fixed-point reasoning process of each network layer by using a coprocessor in the Soc chip. A</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220422&DB=EPODOC&CC=CN&NR=114386588A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76294</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220422&DB=EPODOC&CC=CN&NR=114386588A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WU CHUNXUAN</creatorcontrib><title>Neural network quantification method and device and neural network reasoning method and system</title><description>The invention relates to a neural network quantification method and device and a neural network reasoning method and system in the technical field of information processing. The method comprises the following steps: setting a reasoning precision threshold value of a neural network; separating and quantizing each layer of output feature data quantization parameter and each layer of weight quantization parameter; for the front and back associated layers in the neural network, updating the output feature data quantization parameter of the input layer according to the output feature data quantization parameter of the current layer; and by taking the reasoning precision threshold as a constraint condition, according to a comparison result of each layer of reasoning floating point value and the separated and quantized fixed point value, optimizing and outputting a characteristic data quantization parameter. And executing a fixed-point reasoning process of each network layer by using a coprocessor in the Soc chip. A</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZIjzSy0tSsxRyEstKc8vylYoLE3MK8lMy0xOLMnMz1PITS3JyE9RSMxLUUhJLctMTgUz81D1FKUmFufnZealIysvriwuSc3lYWBNS8wpTuWF0twMim6uIc4euqkF-fGpxQWJyalAU-Kd_QwNTYwtzEwtLByNiVEDAIzMPTQ</recordid><startdate>20220422</startdate><enddate>20220422</enddate><creator>WU CHUNXUAN</creator><scope>EVB</scope></search><sort><creationdate>20220422</creationdate><title>Neural network quantification method and device and neural network reasoning method and system</title><author>WU CHUNXUAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN114386588A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>WU CHUNXUAN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WU CHUNXUAN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Neural network quantification method and device and neural network reasoning method and system</title><date>2022-04-22</date><risdate>2022</risdate><abstract>The invention relates to a neural network quantification method and device and a neural network reasoning method and system in the technical field of information processing. The method comprises the following steps: setting a reasoning precision threshold value of a neural network; separating and quantizing each layer of output feature data quantization parameter and each layer of weight quantization parameter; for the front and back associated layers in the neural network, updating the output feature data quantization parameter of the input layer according to the output feature data quantization parameter of the current layer; and by taking the reasoning precision threshold as a constraint condition, according to a comparison result of each layer of reasoning floating point value and the separated and quantized fixed point value, optimizing and outputting a characteristic data quantization parameter. And executing a fixed-point reasoning process of each network layer by using a coprocessor in the Soc chip. A</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN114386588A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | Neural network quantification method and device and neural network reasoning method and system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T20%3A12%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WU%20CHUNXUAN&rft.date=2022-04-22&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN114386588A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |