Equipment fault diagnosis method
The invention belongs to the technical field of equipment operation guarantee, and particularly relates to an equipment fault diagnosis method. The method comprises the following steps: determining the category, rated parameters and initial life cycle of research equipment; establishing an expert sy...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | PENG XIANMIN LI XINGWANG WEI YAN SU FANGWEI FAN HUIPENG ZHOU WEI FENG GUANG |
description | The invention belongs to the technical field of equipment operation guarantee, and particularly relates to an equipment fault diagnosis method. The method comprises the following steps: determining the category, rated parameters and initial life cycle of research equipment; establishing an expert system model rule base according to object category characteristics; establishing an object historical database; introducing an artificial neural network to model a high-dimensional nonlinear problem; fault diagnosis is realized by using a BP neural network; according to the equipment fault diagnosis method, technologies such as big data and an artificial intelligence algorithm are introduced to digitalize, model and standardize equipment rated parameters, equipment operation conditions, equipment operation and maintenance history and experience and the like, meanwhile, a diagnosis system is endowed with intelligent learning and changing capabilities, and debugging parameters are fed back and corrected according to r |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN114386312A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN114386312A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN114386312A3</originalsourceid><addsrcrecordid>eNrjZFBwLSzNLMhNzStRSEsszSlRSMlMTM_LL84sVshNLcnIT-FhYE1LzClO5YXS3AyKbq4hzh66qQX58anFBYnJqXmpJfHOfoaGJsYWZsaGRo7GxKgBAGxCJXc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Equipment fault diagnosis method</title><source>esp@cenet</source><creator>PENG XIANMIN ; LI XINGWANG ; WEI YAN ; SU FANGWEI ; FAN HUIPENG ; ZHOU WEI ; FENG GUANG</creator><creatorcontrib>PENG XIANMIN ; LI XINGWANG ; WEI YAN ; SU FANGWEI ; FAN HUIPENG ; ZHOU WEI ; FENG GUANG</creatorcontrib><description>The invention belongs to the technical field of equipment operation guarantee, and particularly relates to an equipment fault diagnosis method. The method comprises the following steps: determining the category, rated parameters and initial life cycle of research equipment; establishing an expert system model rule base according to object category characteristics; establishing an object historical database; introducing an artificial neural network to model a high-dimensional nonlinear problem; fault diagnosis is realized by using a BP neural network; according to the equipment fault diagnosis method, technologies such as big data and an artificial intelligence algorithm are introduced to digitalize, model and standardize equipment rated parameters, equipment operation conditions, equipment operation and maintenance history and experience and the like, meanwhile, a diagnosis system is endowed with intelligent learning and changing capabilities, and debugging parameters are fed back and corrected according to r</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220422&DB=EPODOC&CC=CN&NR=114386312A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,309,781,886,25569,76552</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220422&DB=EPODOC&CC=CN&NR=114386312A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>PENG XIANMIN</creatorcontrib><creatorcontrib>LI XINGWANG</creatorcontrib><creatorcontrib>WEI YAN</creatorcontrib><creatorcontrib>SU FANGWEI</creatorcontrib><creatorcontrib>FAN HUIPENG</creatorcontrib><creatorcontrib>ZHOU WEI</creatorcontrib><creatorcontrib>FENG GUANG</creatorcontrib><title>Equipment fault diagnosis method</title><description>The invention belongs to the technical field of equipment operation guarantee, and particularly relates to an equipment fault diagnosis method. The method comprises the following steps: determining the category, rated parameters and initial life cycle of research equipment; establishing an expert system model rule base according to object category characteristics; establishing an object historical database; introducing an artificial neural network to model a high-dimensional nonlinear problem; fault diagnosis is realized by using a BP neural network; according to the equipment fault diagnosis method, technologies such as big data and an artificial intelligence algorithm are introduced to digitalize, model and standardize equipment rated parameters, equipment operation conditions, equipment operation and maintenance history and experience and the like, meanwhile, a diagnosis system is endowed with intelligent learning and changing capabilities, and debugging parameters are fed back and corrected according to r</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZFBwLSzNLMhNzStRSEsszSlRSMlMTM_LL84sVshNLcnIT-FhYE1LzClO5YXS3AyKbq4hzh66qQX58anFBYnJqXmpJfHOfoaGJsYWZsaGRo7GxKgBAGxCJXc</recordid><startdate>20220422</startdate><enddate>20220422</enddate><creator>PENG XIANMIN</creator><creator>LI XINGWANG</creator><creator>WEI YAN</creator><creator>SU FANGWEI</creator><creator>FAN HUIPENG</creator><creator>ZHOU WEI</creator><creator>FENG GUANG</creator><scope>EVB</scope></search><sort><creationdate>20220422</creationdate><title>Equipment fault diagnosis method</title><author>PENG XIANMIN ; LI XINGWANG ; WEI YAN ; SU FANGWEI ; FAN HUIPENG ; ZHOU WEI ; FENG GUANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN114386312A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>PENG XIANMIN</creatorcontrib><creatorcontrib>LI XINGWANG</creatorcontrib><creatorcontrib>WEI YAN</creatorcontrib><creatorcontrib>SU FANGWEI</creatorcontrib><creatorcontrib>FAN HUIPENG</creatorcontrib><creatorcontrib>ZHOU WEI</creatorcontrib><creatorcontrib>FENG GUANG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>PENG XIANMIN</au><au>LI XINGWANG</au><au>WEI YAN</au><au>SU FANGWEI</au><au>FAN HUIPENG</au><au>ZHOU WEI</au><au>FENG GUANG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Equipment fault diagnosis method</title><date>2022-04-22</date><risdate>2022</risdate><abstract>The invention belongs to the technical field of equipment operation guarantee, and particularly relates to an equipment fault diagnosis method. The method comprises the following steps: determining the category, rated parameters and initial life cycle of research equipment; establishing an expert system model rule base according to object category characteristics; establishing an object historical database; introducing an artificial neural network to model a high-dimensional nonlinear problem; fault diagnosis is realized by using a BP neural network; according to the equipment fault diagnosis method, technologies such as big data and an artificial intelligence algorithm are introduced to digitalize, model and standardize equipment rated parameters, equipment operation conditions, equipment operation and maintenance history and experience and the like, meanwhile, a diagnosis system is endowed with intelligent learning and changing capabilities, and debugging parameters are fed back and corrected according to r</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN114386312A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | Equipment fault diagnosis method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T11%3A30%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=PENG%20XIANMIN&rft.date=2022-04-22&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN114386312A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |