Rotary mechanical equipment fault diagnosis method based on MP-CNN and SVM

The invention belongs to the field of rotary mechanical equipment fault diagnosis, and particularly relates to a rotary mechanical equipment fault diagnosis method based on MP-CNN and SVM, and the method comprises the steps: obtaining a to-be-diagnosed rotary mechanical equipment image, carrying out...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: XU XIANGHAN, LI SHUAIYONG, ZHANG CHAO, LI MENGLEI, WEN JINGHUI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator XU XIANGHAN
LI SHUAIYONG
ZHANG CHAO
LI MENGLEI
WEN JINGHUI
description The invention belongs to the field of rotary mechanical equipment fault diagnosis, and particularly relates to a rotary mechanical equipment fault diagnosis method based on MP-CNN and SVM, and the method comprises the steps: obtaining a to-be-diagnosed rotary mechanical equipment image, carrying out the preprocessing of the to-be-diagnosed rotary mechanical equipment image, and obtaining a to-be-diagnosed rotary mechanical equipment image; inputting the preprocessed image into a rotating mechanical equipment fault diagnosis model based on MP-CNN and SVM to obtain a fault diagnosis result of the mechanical equipment; according to the method, the strong feature extraction capability of the layering thought applied to the field of mechanical fault diagnosis and the efficient classification function of the SVM are combined, and the problem that the diagnosis accuracy is low due to the fact that the number and types of samples are large when CNN-SVM is used is solved. 本发明属于旋转机械设备故障诊断领域,具体涉及一种基于MP-CNN与SVM的旋转机械设备故障诊
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN114359639A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN114359639A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN114359639A3</originalsourceid><addsrcrecordid>eNrjZPAKyi9JLKpUyE1NzkjMy0xOzFFILSzNLMhNzStRSEsszSlRSMlMTM_LL84sBioqychPUUhKLE5NUcjPU_AN0HX281NIzEtRCA7z5WFgTUvMKU7lhdLcDIpuriHOHrqpBfnxqcUFicmpeakl8c5-hoYmxqaWZsaWjsbEqAEAvswz7Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Rotary mechanical equipment fault diagnosis method based on MP-CNN and SVM</title><source>esp@cenet</source><creator>XU XIANGHAN ; LI SHUAIYONG ; ZHANG CHAO ; LI MENGLEI ; WEN JINGHUI</creator><creatorcontrib>XU XIANGHAN ; LI SHUAIYONG ; ZHANG CHAO ; LI MENGLEI ; WEN JINGHUI</creatorcontrib><description>The invention belongs to the field of rotary mechanical equipment fault diagnosis, and particularly relates to a rotary mechanical equipment fault diagnosis method based on MP-CNN and SVM, and the method comprises the steps: obtaining a to-be-diagnosed rotary mechanical equipment image, carrying out the preprocessing of the to-be-diagnosed rotary mechanical equipment image, and obtaining a to-be-diagnosed rotary mechanical equipment image; inputting the preprocessed image into a rotating mechanical equipment fault diagnosis model based on MP-CNN and SVM to obtain a fault diagnosis result of the mechanical equipment; according to the method, the strong feature extraction capability of the layering thought applied to the field of mechanical fault diagnosis and the efficient classification function of the SVM are combined, and the problem that the diagnosis accuracy is low due to the fact that the number and types of samples are large when CNN-SVM is used is solved. 本发明属于旋转机械设备故障诊断领域,具体涉及一种基于MP-CNN与SVM的旋转机械设备故障诊</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220415&amp;DB=EPODOC&amp;CC=CN&amp;NR=114359639A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220415&amp;DB=EPODOC&amp;CC=CN&amp;NR=114359639A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>XU XIANGHAN</creatorcontrib><creatorcontrib>LI SHUAIYONG</creatorcontrib><creatorcontrib>ZHANG CHAO</creatorcontrib><creatorcontrib>LI MENGLEI</creatorcontrib><creatorcontrib>WEN JINGHUI</creatorcontrib><title>Rotary mechanical equipment fault diagnosis method based on MP-CNN and SVM</title><description>The invention belongs to the field of rotary mechanical equipment fault diagnosis, and particularly relates to a rotary mechanical equipment fault diagnosis method based on MP-CNN and SVM, and the method comprises the steps: obtaining a to-be-diagnosed rotary mechanical equipment image, carrying out the preprocessing of the to-be-diagnosed rotary mechanical equipment image, and obtaining a to-be-diagnosed rotary mechanical equipment image; inputting the preprocessed image into a rotating mechanical equipment fault diagnosis model based on MP-CNN and SVM to obtain a fault diagnosis result of the mechanical equipment; according to the method, the strong feature extraction capability of the layering thought applied to the field of mechanical fault diagnosis and the efficient classification function of the SVM are combined, and the problem that the diagnosis accuracy is low due to the fact that the number and types of samples are large when CNN-SVM is used is solved. 本发明属于旋转机械设备故障诊断领域,具体涉及一种基于MP-CNN与SVM的旋转机械设备故障诊</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPAKyi9JLKpUyE1NzkjMy0xOzFFILSzNLMhNzStRSEsszSlRSMlMTM_LL84sBioqychPUUhKLE5NUcjPU_AN0HX281NIzEtRCA7z5WFgTUvMKU7lhdLcDIpuriHOHrqpBfnxqcUFicmpeakl8c5-hoYmxqaWZsaWjsbEqAEAvswz7Q</recordid><startdate>20220415</startdate><enddate>20220415</enddate><creator>XU XIANGHAN</creator><creator>LI SHUAIYONG</creator><creator>ZHANG CHAO</creator><creator>LI MENGLEI</creator><creator>WEN JINGHUI</creator><scope>EVB</scope></search><sort><creationdate>20220415</creationdate><title>Rotary mechanical equipment fault diagnosis method based on MP-CNN and SVM</title><author>XU XIANGHAN ; LI SHUAIYONG ; ZHANG CHAO ; LI MENGLEI ; WEN JINGHUI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN114359639A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>XU XIANGHAN</creatorcontrib><creatorcontrib>LI SHUAIYONG</creatorcontrib><creatorcontrib>ZHANG CHAO</creatorcontrib><creatorcontrib>LI MENGLEI</creatorcontrib><creatorcontrib>WEN JINGHUI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>XU XIANGHAN</au><au>LI SHUAIYONG</au><au>ZHANG CHAO</au><au>LI MENGLEI</au><au>WEN JINGHUI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Rotary mechanical equipment fault diagnosis method based on MP-CNN and SVM</title><date>2022-04-15</date><risdate>2022</risdate><abstract>The invention belongs to the field of rotary mechanical equipment fault diagnosis, and particularly relates to a rotary mechanical equipment fault diagnosis method based on MP-CNN and SVM, and the method comprises the steps: obtaining a to-be-diagnosed rotary mechanical equipment image, carrying out the preprocessing of the to-be-diagnosed rotary mechanical equipment image, and obtaining a to-be-diagnosed rotary mechanical equipment image; inputting the preprocessed image into a rotating mechanical equipment fault diagnosis model based on MP-CNN and SVM to obtain a fault diagnosis result of the mechanical equipment; according to the method, the strong feature extraction capability of the layering thought applied to the field of mechanical fault diagnosis and the efficient classification function of the SVM are combined, and the problem that the diagnosis accuracy is low due to the fact that the number and types of samples are large when CNN-SVM is used is solved. 本发明属于旋转机械设备故障诊断领域,具体涉及一种基于MP-CNN与SVM的旋转机械设备故障诊</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN114359639A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title Rotary mechanical equipment fault diagnosis method based on MP-CNN and SVM
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T09%3A14%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=XU%20XIANGHAN&rft.date=2022-04-15&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN114359639A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true