Deep neural network-based pathological myopia detection system

The invention provides a pathological myopia detection system based on a deep neural network, which comprises a computer memory, a computer processor and an executable program, and is characterized in that the executable program is used for receiving an eye fundus image, transmitting the eye fundus...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: CHEN WEI, HUANG JIANI, WANG SHUQUN, HE XIAOYING, HE QIN, TANG XUYUAN, YANG MING, YU WANGSHU, REN PEIFANG, ZHU MIAOMIAO, HAN WEI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator CHEN WEI
HUANG JIANI
WANG SHUQUN
HE XIAOYING
HE QIN
TANG XUYUAN
YANG MING
YU WANGSHU
REN PEIFANG
ZHU MIAOMIAO
HAN WEI
description The invention provides a pathological myopia detection system based on a deep neural network, which comprises a computer memory, a computer processor and an executable program, and is characterized in that the executable program is used for receiving an eye fundus image, transmitting the eye fundus image into a trained pathological myopia detection network model and finally outputting a result; the pathological myopia detection network model comprises a focus detector, a lesion degree classifier and a pathological myopia discriminator; the lesion degree classifier is used for judging the lesion level of the fundus image; if the lesion level of the image is abnormal, the fundus image is sent to a focus detector; the focus detector is used for detecting the type and position of a focus in the fundus image; the pathological myopia discriminator discriminates whether the fundus image suffers from pathological myopia according to output results of the lesion degree classifier and the focus detector. The system can
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN114334124A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN114334124A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN114334124A3</originalsourceid><addsrcrecordid>eNrjZLBzSU0tUMhLLS1KzAFSJeX5Rdm6SYnFqSkKBYklGfk5-emZyUCp3Mr8gsxEhZTUktTkksz8PIXiyuKS1FweBta0xJziVF4ozc2g6OYa4uyhm1qQH59aXJCYnAo0NN7Zz9DQxNjYxNDIxNGYGDUAiBAw-A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Deep neural network-based pathological myopia detection system</title><source>esp@cenet</source><creator>CHEN WEI ; HUANG JIANI ; WANG SHUQUN ; HE XIAOYING ; HE QIN ; TANG XUYUAN ; YANG MING ; YU WANGSHU ; REN PEIFANG ; ZHU MIAOMIAO ; HAN WEI</creator><creatorcontrib>CHEN WEI ; HUANG JIANI ; WANG SHUQUN ; HE XIAOYING ; HE QIN ; TANG XUYUAN ; YANG MING ; YU WANGSHU ; REN PEIFANG ; ZHU MIAOMIAO ; HAN WEI</creatorcontrib><description>The invention provides a pathological myopia detection system based on a deep neural network, which comprises a computer memory, a computer processor and an executable program, and is characterized in that the executable program is used for receiving an eye fundus image, transmitting the eye fundus image into a trained pathological myopia detection network model and finally outputting a result; the pathological myopia detection network model comprises a focus detector, a lesion degree classifier and a pathological myopia discriminator; the lesion degree classifier is used for judging the lesion level of the fundus image; if the lesion level of the image is abnormal, the fundus image is sent to a focus detector; the focus detector is used for detecting the type and position of a focus in the fundus image; the pathological myopia discriminator discriminates whether the fundus image suffers from pathological myopia according to output results of the lesion degree classifier and the focus detector. The system can</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; DIAGNOSIS ; ELECTRIC DIGITAL DATA PROCESSING ; HANDLING RECORD CARRIERS ; HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA ; HUMAN NECESSITIES ; HYGIENE ; IDENTIFICATION ; INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS ; MEDICAL OR VETERINARY SCIENCE ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS ; SURGERY</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220412&amp;DB=EPODOC&amp;CC=CN&amp;NR=114334124A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220412&amp;DB=EPODOC&amp;CC=CN&amp;NR=114334124A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>CHEN WEI</creatorcontrib><creatorcontrib>HUANG JIANI</creatorcontrib><creatorcontrib>WANG SHUQUN</creatorcontrib><creatorcontrib>HE XIAOYING</creatorcontrib><creatorcontrib>HE QIN</creatorcontrib><creatorcontrib>TANG XUYUAN</creatorcontrib><creatorcontrib>YANG MING</creatorcontrib><creatorcontrib>YU WANGSHU</creatorcontrib><creatorcontrib>REN PEIFANG</creatorcontrib><creatorcontrib>ZHU MIAOMIAO</creatorcontrib><creatorcontrib>HAN WEI</creatorcontrib><title>Deep neural network-based pathological myopia detection system</title><description>The invention provides a pathological myopia detection system based on a deep neural network, which comprises a computer memory, a computer processor and an executable program, and is characterized in that the executable program is used for receiving an eye fundus image, transmitting the eye fundus image into a trained pathological myopia detection network model and finally outputting a result; the pathological myopia detection network model comprises a focus detector, a lesion degree classifier and a pathological myopia discriminator; the lesion degree classifier is used for judging the lesion level of the fundus image; if the lesion level of the image is abnormal, the fundus image is sent to a focus detector; the focus detector is used for detecting the type and position of a focus in the fundus image; the pathological myopia discriminator discriminates whether the fundus image suffers from pathological myopia according to output results of the lesion degree classifier and the focus detector. The system can</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DIAGNOSIS</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA</subject><subject>HUMAN NECESSITIES</subject><subject>HYGIENE</subject><subject>IDENTIFICATION</subject><subject>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</subject><subject>MEDICAL OR VETERINARY SCIENCE</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><subject>SURGERY</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLBzSU0tUMhLLS1KzAFSJeX5Rdm6SYnFqSkKBYklGfk5-emZyUCp3Mr8gsxEhZTUktTkksz8PIXiyuKS1FweBta0xJziVF4ozc2g6OYa4uyhm1qQH59aXJCYnAo0NN7Zz9DQxNjYxNDIxNGYGDUAiBAw-A</recordid><startdate>20220412</startdate><enddate>20220412</enddate><creator>CHEN WEI</creator><creator>HUANG JIANI</creator><creator>WANG SHUQUN</creator><creator>HE XIAOYING</creator><creator>HE QIN</creator><creator>TANG XUYUAN</creator><creator>YANG MING</creator><creator>YU WANGSHU</creator><creator>REN PEIFANG</creator><creator>ZHU MIAOMIAO</creator><creator>HAN WEI</creator><scope>EVB</scope></search><sort><creationdate>20220412</creationdate><title>Deep neural network-based pathological myopia detection system</title><author>CHEN WEI ; HUANG JIANI ; WANG SHUQUN ; HE XIAOYING ; HE QIN ; TANG XUYUAN ; YANG MING ; YU WANGSHU ; REN PEIFANG ; ZHU MIAOMIAO ; HAN WEI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN114334124A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DIAGNOSIS</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA</topic><topic>HUMAN NECESSITIES</topic><topic>HYGIENE</topic><topic>IDENTIFICATION</topic><topic>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</topic><topic>MEDICAL OR VETERINARY SCIENCE</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><topic>SURGERY</topic><toplevel>online_resources</toplevel><creatorcontrib>CHEN WEI</creatorcontrib><creatorcontrib>HUANG JIANI</creatorcontrib><creatorcontrib>WANG SHUQUN</creatorcontrib><creatorcontrib>HE XIAOYING</creatorcontrib><creatorcontrib>HE QIN</creatorcontrib><creatorcontrib>TANG XUYUAN</creatorcontrib><creatorcontrib>YANG MING</creatorcontrib><creatorcontrib>YU WANGSHU</creatorcontrib><creatorcontrib>REN PEIFANG</creatorcontrib><creatorcontrib>ZHU MIAOMIAO</creatorcontrib><creatorcontrib>HAN WEI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>CHEN WEI</au><au>HUANG JIANI</au><au>WANG SHUQUN</au><au>HE XIAOYING</au><au>HE QIN</au><au>TANG XUYUAN</au><au>YANG MING</au><au>YU WANGSHU</au><au>REN PEIFANG</au><au>ZHU MIAOMIAO</au><au>HAN WEI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Deep neural network-based pathological myopia detection system</title><date>2022-04-12</date><risdate>2022</risdate><abstract>The invention provides a pathological myopia detection system based on a deep neural network, which comprises a computer memory, a computer processor and an executable program, and is characterized in that the executable program is used for receiving an eye fundus image, transmitting the eye fundus image into a trained pathological myopia detection network model and finally outputting a result; the pathological myopia detection network model comprises a focus detector, a lesion degree classifier and a pathological myopia discriminator; the lesion degree classifier is used for judging the lesion level of the fundus image; if the lesion level of the image is abnormal, the fundus image is sent to a focus detector; the focus detector is used for detecting the type and position of a focus in the fundus image; the pathological myopia discriminator discriminates whether the fundus image suffers from pathological myopia according to output results of the lesion degree classifier and the focus detector. The system can</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN114334124A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
DIAGNOSIS
ELECTRIC DIGITAL DATA PROCESSING
HANDLING RECORD CARRIERS
HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA
HUMAN NECESSITIES
HYGIENE
IDENTIFICATION
INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS
MEDICAL OR VETERINARY SCIENCE
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
SURGERY
title Deep neural network-based pathological myopia detection system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T06%3A40%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=CHEN%20WEI&rft.date=2022-04-12&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN114334124A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true