Deep neural network-based pathological myopia detection system
The invention provides a pathological myopia detection system based on a deep neural network, which comprises a computer memory, a computer processor and an executable program, and is characterized in that the executable program is used for receiving an eye fundus image, transmitting the eye fundus...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | CHEN WEI HUANG JIANI WANG SHUQUN HE XIAOYING HE QIN TANG XUYUAN YANG MING YU WANGSHU REN PEIFANG ZHU MIAOMIAO HAN WEI |
description | The invention provides a pathological myopia detection system based on a deep neural network, which comprises a computer memory, a computer processor and an executable program, and is characterized in that the executable program is used for receiving an eye fundus image, transmitting the eye fundus image into a trained pathological myopia detection network model and finally outputting a result; the pathological myopia detection network model comprises a focus detector, a lesion degree classifier and a pathological myopia discriminator; the lesion degree classifier is used for judging the lesion level of the fundus image; if the lesion level of the image is abnormal, the fundus image is sent to a focus detector; the focus detector is used for detecting the type and position of a focus in the fundus image; the pathological myopia discriminator discriminates whether the fundus image suffers from pathological myopia according to output results of the lesion degree classifier and the focus detector. The system can |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN114334124A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN114334124A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN114334124A3</originalsourceid><addsrcrecordid>eNrjZLBzSU0tUMhLLS1KzAFSJeX5Rdm6SYnFqSkKBYklGfk5-emZyUCp3Mr8gsxEhZTUktTkksz8PIXiyuKS1FweBta0xJziVF4ozc2g6OYa4uyhm1qQH59aXJCYnAo0NN7Zz9DQxNjYxNDIxNGYGDUAiBAw-A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Deep neural network-based pathological myopia detection system</title><source>esp@cenet</source><creator>CHEN WEI ; HUANG JIANI ; WANG SHUQUN ; HE XIAOYING ; HE QIN ; TANG XUYUAN ; YANG MING ; YU WANGSHU ; REN PEIFANG ; ZHU MIAOMIAO ; HAN WEI</creator><creatorcontrib>CHEN WEI ; HUANG JIANI ; WANG SHUQUN ; HE XIAOYING ; HE QIN ; TANG XUYUAN ; YANG MING ; YU WANGSHU ; REN PEIFANG ; ZHU MIAOMIAO ; HAN WEI</creatorcontrib><description>The invention provides a pathological myopia detection system based on a deep neural network, which comprises a computer memory, a computer processor and an executable program, and is characterized in that the executable program is used for receiving an eye fundus image, transmitting the eye fundus image into a trained pathological myopia detection network model and finally outputting a result; the pathological myopia detection network model comprises a focus detector, a lesion degree classifier and a pathological myopia discriminator; the lesion degree classifier is used for judging the lesion level of the fundus image; if the lesion level of the image is abnormal, the fundus image is sent to a focus detector; the focus detector is used for detecting the type and position of a focus in the fundus image; the pathological myopia discriminator discriminates whether the fundus image suffers from pathological myopia according to output results of the lesion degree classifier and the focus detector. The system can</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; DIAGNOSIS ; ELECTRIC DIGITAL DATA PROCESSING ; HANDLING RECORD CARRIERS ; HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA ; HUMAN NECESSITIES ; HYGIENE ; IDENTIFICATION ; INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS ; MEDICAL OR VETERINARY SCIENCE ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS ; SURGERY</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220412&DB=EPODOC&CC=CN&NR=114334124A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220412&DB=EPODOC&CC=CN&NR=114334124A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>CHEN WEI</creatorcontrib><creatorcontrib>HUANG JIANI</creatorcontrib><creatorcontrib>WANG SHUQUN</creatorcontrib><creatorcontrib>HE XIAOYING</creatorcontrib><creatorcontrib>HE QIN</creatorcontrib><creatorcontrib>TANG XUYUAN</creatorcontrib><creatorcontrib>YANG MING</creatorcontrib><creatorcontrib>YU WANGSHU</creatorcontrib><creatorcontrib>REN PEIFANG</creatorcontrib><creatorcontrib>ZHU MIAOMIAO</creatorcontrib><creatorcontrib>HAN WEI</creatorcontrib><title>Deep neural network-based pathological myopia detection system</title><description>The invention provides a pathological myopia detection system based on a deep neural network, which comprises a computer memory, a computer processor and an executable program, and is characterized in that the executable program is used for receiving an eye fundus image, transmitting the eye fundus image into a trained pathological myopia detection network model and finally outputting a result; the pathological myopia detection network model comprises a focus detector, a lesion degree classifier and a pathological myopia discriminator; the lesion degree classifier is used for judging the lesion level of the fundus image; if the lesion level of the image is abnormal, the fundus image is sent to a focus detector; the focus detector is used for detecting the type and position of a focus in the fundus image; the pathological myopia discriminator discriminates whether the fundus image suffers from pathological myopia according to output results of the lesion degree classifier and the focus detector. The system can</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DIAGNOSIS</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA</subject><subject>HUMAN NECESSITIES</subject><subject>HYGIENE</subject><subject>IDENTIFICATION</subject><subject>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</subject><subject>MEDICAL OR VETERINARY SCIENCE</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><subject>SURGERY</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLBzSU0tUMhLLS1KzAFSJeX5Rdm6SYnFqSkKBYklGfk5-emZyUCp3Mr8gsxEhZTUktTkksz8PIXiyuKS1FweBta0xJziVF4ozc2g6OYa4uyhm1qQH59aXJCYnAo0NN7Zz9DQxNjYxNDIxNGYGDUAiBAw-A</recordid><startdate>20220412</startdate><enddate>20220412</enddate><creator>CHEN WEI</creator><creator>HUANG JIANI</creator><creator>WANG SHUQUN</creator><creator>HE XIAOYING</creator><creator>HE QIN</creator><creator>TANG XUYUAN</creator><creator>YANG MING</creator><creator>YU WANGSHU</creator><creator>REN PEIFANG</creator><creator>ZHU MIAOMIAO</creator><creator>HAN WEI</creator><scope>EVB</scope></search><sort><creationdate>20220412</creationdate><title>Deep neural network-based pathological myopia detection system</title><author>CHEN WEI ; HUANG JIANI ; WANG SHUQUN ; HE XIAOYING ; HE QIN ; TANG XUYUAN ; YANG MING ; YU WANGSHU ; REN PEIFANG ; ZHU MIAOMIAO ; HAN WEI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN114334124A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DIAGNOSIS</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA</topic><topic>HUMAN NECESSITIES</topic><topic>HYGIENE</topic><topic>IDENTIFICATION</topic><topic>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</topic><topic>MEDICAL OR VETERINARY SCIENCE</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><topic>SURGERY</topic><toplevel>online_resources</toplevel><creatorcontrib>CHEN WEI</creatorcontrib><creatorcontrib>HUANG JIANI</creatorcontrib><creatorcontrib>WANG SHUQUN</creatorcontrib><creatorcontrib>HE XIAOYING</creatorcontrib><creatorcontrib>HE QIN</creatorcontrib><creatorcontrib>TANG XUYUAN</creatorcontrib><creatorcontrib>YANG MING</creatorcontrib><creatorcontrib>YU WANGSHU</creatorcontrib><creatorcontrib>REN PEIFANG</creatorcontrib><creatorcontrib>ZHU MIAOMIAO</creatorcontrib><creatorcontrib>HAN WEI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>CHEN WEI</au><au>HUANG JIANI</au><au>WANG SHUQUN</au><au>HE XIAOYING</au><au>HE QIN</au><au>TANG XUYUAN</au><au>YANG MING</au><au>YU WANGSHU</au><au>REN PEIFANG</au><au>ZHU MIAOMIAO</au><au>HAN WEI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Deep neural network-based pathological myopia detection system</title><date>2022-04-12</date><risdate>2022</risdate><abstract>The invention provides a pathological myopia detection system based on a deep neural network, which comprises a computer memory, a computer processor and an executable program, and is characterized in that the executable program is used for receiving an eye fundus image, transmitting the eye fundus image into a trained pathological myopia detection network model and finally outputting a result; the pathological myopia detection network model comprises a focus detector, a lesion degree classifier and a pathological myopia discriminator; the lesion degree classifier is used for judging the lesion level of the fundus image; if the lesion level of the image is abnormal, the fundus image is sent to a focus detector; the focus detector is used for detecting the type and position of a focus in the fundus image; the pathological myopia discriminator discriminates whether the fundus image suffers from pathological myopia according to output results of the lesion degree classifier and the focus detector. The system can</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN114334124A |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING DIAGNOSIS ELECTRIC DIGITAL DATA PROCESSING HANDLING RECORD CARRIERS HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA HUMAN NECESSITIES HYGIENE IDENTIFICATION INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS MEDICAL OR VETERINARY SCIENCE PHYSICS PRESENTATION OF DATA RECOGNITION OF DATA RECORD CARRIERS SURGERY |
title | Deep neural network-based pathological myopia detection system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T06%3A40%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=CHEN%20WEI&rft.date=2022-04-12&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN114334124A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |