Business traffic anomaly detection model establishment method and anomaly detection method

The invention provides a business flow anomaly detection model establishment method and an anomaly detection method. The method comprises the following steps: acquiring historical power grid flow data with classification marks; performing coding processing on the historical power grid flow data to o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: KOU XIAOXI, XIAO NA, NIE ZHENGPU, LAI JI, ZENG JING, LYU BING, CHANG HAIJIAO, ZHANG SHIJUN, YANG RUI, XU XIANGSEN, WANG HAICHAO, MENG DE, XU DAWEI, LEE HYUN, GUAN JIAHENG, GAO SONG, LI SHUO, NA QIONGLAN, YAO QIGUI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator KOU XIAOXI
XIAO NA
NIE ZHENGPU
LAI JI
ZENG JING
LYU BING
CHANG HAIJIAO
ZHANG SHIJUN
YANG RUI
XU XIANGSEN
WANG HAICHAO
MENG DE
XU DAWEI
LEE HYUN
GUAN JIAHENG
GAO SONG
LI SHUO
NA QIONGLAN
YAO QIGUI
description The invention provides a business flow anomaly detection model establishment method and an anomaly detection method. The method comprises the following steps: acquiring historical power grid flow data with classification marks; performing coding processing on the historical power grid flow data to obtain a first feature vector set; inputting the first feature vector set into a multi-layer coding block of an initial anomaly detection model for processing to obtain a second feature vector set, and then inputting the second feature vector set into a multi-layer perceptron of the initial anomaly detection model to obtain a prediction result; according to the prediction result and the classification mark of the historical power grid flow data, the initial anomaly detection model is trained to obtain a trained anomaly detection model, the key information of the power grid flow data is extracted, and meanwhile, the mutual dependency relationship between the information is established, so that the reliability and acc
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN114330544A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN114330544A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN114330544A3</originalsourceid><addsrcrecordid>eNrjZIhyKi3OzEstLlYoKUpMS8tMVkjMy89NzKlUSEktSU0uyczPU8jNT0nNUUgtLklMyskszshNzStRyE0tychPASpOwaYBLMnDwJqWmFOcyguluRkU3VxDnD10Uwvy41OLCxKTU_NSS-Kd_QwNTYyNDUxNTByNiVEDAIihO7c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Business traffic anomaly detection model establishment method and anomaly detection method</title><source>esp@cenet</source><creator>KOU XIAOXI ; XIAO NA ; NIE ZHENGPU ; LAI JI ; ZENG JING ; LYU BING ; CHANG HAIJIAO ; ZHANG SHIJUN ; YANG RUI ; XU XIANGSEN ; WANG HAICHAO ; MENG DE ; XU DAWEI ; LEE HYUN ; GUAN JIAHENG ; GAO SONG ; LI SHUO ; NA QIONGLAN ; YAO QIGUI</creator><creatorcontrib>KOU XIAOXI ; XIAO NA ; NIE ZHENGPU ; LAI JI ; ZENG JING ; LYU BING ; CHANG HAIJIAO ; ZHANG SHIJUN ; YANG RUI ; XU XIANGSEN ; WANG HAICHAO ; MENG DE ; XU DAWEI ; LEE HYUN ; GUAN JIAHENG ; GAO SONG ; LI SHUO ; NA QIONGLAN ; YAO QIGUI</creatorcontrib><description>The invention provides a business flow anomaly detection model establishment method and an anomaly detection method. The method comprises the following steps: acquiring historical power grid flow data with classification marks; performing coding processing on the historical power grid flow data to obtain a first feature vector set; inputting the first feature vector set into a multi-layer coding block of an initial anomaly detection model for processing to obtain a second feature vector set, and then inputting the second feature vector set into a multi-layer perceptron of the initial anomaly detection model to obtain a prediction result; according to the prediction result and the classification mark of the historical power grid flow data, the initial anomaly detection model is trained to obtain a trained anomaly detection model, the key information of the power grid flow data is extracted, and meanwhile, the mutual dependency relationship between the information is established, so that the reliability and acc</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220412&amp;DB=EPODOC&amp;CC=CN&amp;NR=114330544A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,309,781,886,25568,76551</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220412&amp;DB=EPODOC&amp;CC=CN&amp;NR=114330544A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>KOU XIAOXI</creatorcontrib><creatorcontrib>XIAO NA</creatorcontrib><creatorcontrib>NIE ZHENGPU</creatorcontrib><creatorcontrib>LAI JI</creatorcontrib><creatorcontrib>ZENG JING</creatorcontrib><creatorcontrib>LYU BING</creatorcontrib><creatorcontrib>CHANG HAIJIAO</creatorcontrib><creatorcontrib>ZHANG SHIJUN</creatorcontrib><creatorcontrib>YANG RUI</creatorcontrib><creatorcontrib>XU XIANGSEN</creatorcontrib><creatorcontrib>WANG HAICHAO</creatorcontrib><creatorcontrib>MENG DE</creatorcontrib><creatorcontrib>XU DAWEI</creatorcontrib><creatorcontrib>LEE HYUN</creatorcontrib><creatorcontrib>GUAN JIAHENG</creatorcontrib><creatorcontrib>GAO SONG</creatorcontrib><creatorcontrib>LI SHUO</creatorcontrib><creatorcontrib>NA QIONGLAN</creatorcontrib><creatorcontrib>YAO QIGUI</creatorcontrib><title>Business traffic anomaly detection model establishment method and anomaly detection method</title><description>The invention provides a business flow anomaly detection model establishment method and an anomaly detection method. The method comprises the following steps: acquiring historical power grid flow data with classification marks; performing coding processing on the historical power grid flow data to obtain a first feature vector set; inputting the first feature vector set into a multi-layer coding block of an initial anomaly detection model for processing to obtain a second feature vector set, and then inputting the second feature vector set into a multi-layer perceptron of the initial anomaly detection model to obtain a prediction result; according to the prediction result and the classification mark of the historical power grid flow data, the initial anomaly detection model is trained to obtain a trained anomaly detection model, the key information of the power grid flow data is extracted, and meanwhile, the mutual dependency relationship between the information is established, so that the reliability and acc</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZIhyKi3OzEstLlYoKUpMS8tMVkjMy89NzKlUSEktSU0uyczPU8jNT0nNUUgtLklMyskszshNzStRyE0tychPASpOwaYBLMnDwJqWmFOcyguluRkU3VxDnD10Uwvy41OLCxKTU_NSS-Kd_QwNTYyNDUxNTByNiVEDAIihO7c</recordid><startdate>20220412</startdate><enddate>20220412</enddate><creator>KOU XIAOXI</creator><creator>XIAO NA</creator><creator>NIE ZHENGPU</creator><creator>LAI JI</creator><creator>ZENG JING</creator><creator>LYU BING</creator><creator>CHANG HAIJIAO</creator><creator>ZHANG SHIJUN</creator><creator>YANG RUI</creator><creator>XU XIANGSEN</creator><creator>WANG HAICHAO</creator><creator>MENG DE</creator><creator>XU DAWEI</creator><creator>LEE HYUN</creator><creator>GUAN JIAHENG</creator><creator>GAO SONG</creator><creator>LI SHUO</creator><creator>NA QIONGLAN</creator><creator>YAO QIGUI</creator><scope>EVB</scope></search><sort><creationdate>20220412</creationdate><title>Business traffic anomaly detection model establishment method and anomaly detection method</title><author>KOU XIAOXI ; XIAO NA ; NIE ZHENGPU ; LAI JI ; ZENG JING ; LYU BING ; CHANG HAIJIAO ; ZHANG SHIJUN ; YANG RUI ; XU XIANGSEN ; WANG HAICHAO ; MENG DE ; XU DAWEI ; LEE HYUN ; GUAN JIAHENG ; GAO SONG ; LI SHUO ; NA QIONGLAN ; YAO QIGUI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN114330544A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>KOU XIAOXI</creatorcontrib><creatorcontrib>XIAO NA</creatorcontrib><creatorcontrib>NIE ZHENGPU</creatorcontrib><creatorcontrib>LAI JI</creatorcontrib><creatorcontrib>ZENG JING</creatorcontrib><creatorcontrib>LYU BING</creatorcontrib><creatorcontrib>CHANG HAIJIAO</creatorcontrib><creatorcontrib>ZHANG SHIJUN</creatorcontrib><creatorcontrib>YANG RUI</creatorcontrib><creatorcontrib>XU XIANGSEN</creatorcontrib><creatorcontrib>WANG HAICHAO</creatorcontrib><creatorcontrib>MENG DE</creatorcontrib><creatorcontrib>XU DAWEI</creatorcontrib><creatorcontrib>LEE HYUN</creatorcontrib><creatorcontrib>GUAN JIAHENG</creatorcontrib><creatorcontrib>GAO SONG</creatorcontrib><creatorcontrib>LI SHUO</creatorcontrib><creatorcontrib>NA QIONGLAN</creatorcontrib><creatorcontrib>YAO QIGUI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>KOU XIAOXI</au><au>XIAO NA</au><au>NIE ZHENGPU</au><au>LAI JI</au><au>ZENG JING</au><au>LYU BING</au><au>CHANG HAIJIAO</au><au>ZHANG SHIJUN</au><au>YANG RUI</au><au>XU XIANGSEN</au><au>WANG HAICHAO</au><au>MENG DE</au><au>XU DAWEI</au><au>LEE HYUN</au><au>GUAN JIAHENG</au><au>GAO SONG</au><au>LI SHUO</au><au>NA QIONGLAN</au><au>YAO QIGUI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Business traffic anomaly detection model establishment method and anomaly detection method</title><date>2022-04-12</date><risdate>2022</risdate><abstract>The invention provides a business flow anomaly detection model establishment method and an anomaly detection method. The method comprises the following steps: acquiring historical power grid flow data with classification marks; performing coding processing on the historical power grid flow data to obtain a first feature vector set; inputting the first feature vector set into a multi-layer coding block of an initial anomaly detection model for processing to obtain a second feature vector set, and then inputting the second feature vector set into a multi-layer perceptron of the initial anomaly detection model to obtain a prediction result; according to the prediction result and the classification mark of the historical power grid flow data, the initial anomaly detection model is trained to obtain a trained anomaly detection model, the key information of the power grid flow data is extracted, and meanwhile, the mutual dependency relationship between the information is established, so that the reliability and acc</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN114330544A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title Business traffic anomaly detection model establishment method and anomaly detection method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T16%3A58%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=KOU%20XIAOXI&rft.date=2022-04-12&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN114330544A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true