Business traffic anomaly detection model establishment method and anomaly detection method
The invention provides a business flow anomaly detection model establishment method and an anomaly detection method. The method comprises the following steps: acquiring historical power grid flow data with classification marks; performing coding processing on the historical power grid flow data to o...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | KOU XIAOXI XIAO NA NIE ZHENGPU LAI JI ZENG JING LYU BING CHANG HAIJIAO ZHANG SHIJUN YANG RUI XU XIANGSEN WANG HAICHAO MENG DE XU DAWEI LEE HYUN GUAN JIAHENG GAO SONG LI SHUO NA QIONGLAN YAO QIGUI |
description | The invention provides a business flow anomaly detection model establishment method and an anomaly detection method. The method comprises the following steps: acquiring historical power grid flow data with classification marks; performing coding processing on the historical power grid flow data to obtain a first feature vector set; inputting the first feature vector set into a multi-layer coding block of an initial anomaly detection model for processing to obtain a second feature vector set, and then inputting the second feature vector set into a multi-layer perceptron of the initial anomaly detection model to obtain a prediction result; according to the prediction result and the classification mark of the historical power grid flow data, the initial anomaly detection model is trained to obtain a trained anomaly detection model, the key information of the power grid flow data is extracted, and meanwhile, the mutual dependency relationship between the information is established, so that the reliability and acc |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN114330544A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN114330544A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN114330544A3</originalsourceid><addsrcrecordid>eNrjZIhyKi3OzEstLlYoKUpMS8tMVkjMy89NzKlUSEktSU0uyczPU8jNT0nNUUgtLklMyskszshNzStRyE0tychPASpOwaYBLMnDwJqWmFOcyguluRkU3VxDnD10Uwvy41OLCxKTU_NSS-Kd_QwNTYyNDUxNTByNiVEDAIihO7c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Business traffic anomaly detection model establishment method and anomaly detection method</title><source>esp@cenet</source><creator>KOU XIAOXI ; XIAO NA ; NIE ZHENGPU ; LAI JI ; ZENG JING ; LYU BING ; CHANG HAIJIAO ; ZHANG SHIJUN ; YANG RUI ; XU XIANGSEN ; WANG HAICHAO ; MENG DE ; XU DAWEI ; LEE HYUN ; GUAN JIAHENG ; GAO SONG ; LI SHUO ; NA QIONGLAN ; YAO QIGUI</creator><creatorcontrib>KOU XIAOXI ; XIAO NA ; NIE ZHENGPU ; LAI JI ; ZENG JING ; LYU BING ; CHANG HAIJIAO ; ZHANG SHIJUN ; YANG RUI ; XU XIANGSEN ; WANG HAICHAO ; MENG DE ; XU DAWEI ; LEE HYUN ; GUAN JIAHENG ; GAO SONG ; LI SHUO ; NA QIONGLAN ; YAO QIGUI</creatorcontrib><description>The invention provides a business flow anomaly detection model establishment method and an anomaly detection method. The method comprises the following steps: acquiring historical power grid flow data with classification marks; performing coding processing on the historical power grid flow data to obtain a first feature vector set; inputting the first feature vector set into a multi-layer coding block of an initial anomaly detection model for processing to obtain a second feature vector set, and then inputting the second feature vector set into a multi-layer perceptron of the initial anomaly detection model to obtain a prediction result; according to the prediction result and the classification mark of the historical power grid flow data, the initial anomaly detection model is trained to obtain a trained anomaly detection model, the key information of the power grid flow data is extracted, and meanwhile, the mutual dependency relationship between the information is established, so that the reliability and acc</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220412&DB=EPODOC&CC=CN&NR=114330544A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,309,781,886,25568,76551</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220412&DB=EPODOC&CC=CN&NR=114330544A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>KOU XIAOXI</creatorcontrib><creatorcontrib>XIAO NA</creatorcontrib><creatorcontrib>NIE ZHENGPU</creatorcontrib><creatorcontrib>LAI JI</creatorcontrib><creatorcontrib>ZENG JING</creatorcontrib><creatorcontrib>LYU BING</creatorcontrib><creatorcontrib>CHANG HAIJIAO</creatorcontrib><creatorcontrib>ZHANG SHIJUN</creatorcontrib><creatorcontrib>YANG RUI</creatorcontrib><creatorcontrib>XU XIANGSEN</creatorcontrib><creatorcontrib>WANG HAICHAO</creatorcontrib><creatorcontrib>MENG DE</creatorcontrib><creatorcontrib>XU DAWEI</creatorcontrib><creatorcontrib>LEE HYUN</creatorcontrib><creatorcontrib>GUAN JIAHENG</creatorcontrib><creatorcontrib>GAO SONG</creatorcontrib><creatorcontrib>LI SHUO</creatorcontrib><creatorcontrib>NA QIONGLAN</creatorcontrib><creatorcontrib>YAO QIGUI</creatorcontrib><title>Business traffic anomaly detection model establishment method and anomaly detection method</title><description>The invention provides a business flow anomaly detection model establishment method and an anomaly detection method. The method comprises the following steps: acquiring historical power grid flow data with classification marks; performing coding processing on the historical power grid flow data to obtain a first feature vector set; inputting the first feature vector set into a multi-layer coding block of an initial anomaly detection model for processing to obtain a second feature vector set, and then inputting the second feature vector set into a multi-layer perceptron of the initial anomaly detection model to obtain a prediction result; according to the prediction result and the classification mark of the historical power grid flow data, the initial anomaly detection model is trained to obtain a trained anomaly detection model, the key information of the power grid flow data is extracted, and meanwhile, the mutual dependency relationship between the information is established, so that the reliability and acc</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZIhyKi3OzEstLlYoKUpMS8tMVkjMy89NzKlUSEktSU0uyczPU8jNT0nNUUgtLklMyskszshNzStRyE0tychPASpOwaYBLMnDwJqWmFOcyguluRkU3VxDnD10Uwvy41OLCxKTU_NSS-Kd_QwNTYyNDUxNTByNiVEDAIihO7c</recordid><startdate>20220412</startdate><enddate>20220412</enddate><creator>KOU XIAOXI</creator><creator>XIAO NA</creator><creator>NIE ZHENGPU</creator><creator>LAI JI</creator><creator>ZENG JING</creator><creator>LYU BING</creator><creator>CHANG HAIJIAO</creator><creator>ZHANG SHIJUN</creator><creator>YANG RUI</creator><creator>XU XIANGSEN</creator><creator>WANG HAICHAO</creator><creator>MENG DE</creator><creator>XU DAWEI</creator><creator>LEE HYUN</creator><creator>GUAN JIAHENG</creator><creator>GAO SONG</creator><creator>LI SHUO</creator><creator>NA QIONGLAN</creator><creator>YAO QIGUI</creator><scope>EVB</scope></search><sort><creationdate>20220412</creationdate><title>Business traffic anomaly detection model establishment method and anomaly detection method</title><author>KOU XIAOXI ; XIAO NA ; NIE ZHENGPU ; LAI JI ; ZENG JING ; LYU BING ; CHANG HAIJIAO ; ZHANG SHIJUN ; YANG RUI ; XU XIANGSEN ; WANG HAICHAO ; MENG DE ; XU DAWEI ; LEE HYUN ; GUAN JIAHENG ; GAO SONG ; LI SHUO ; NA QIONGLAN ; YAO QIGUI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN114330544A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>KOU XIAOXI</creatorcontrib><creatorcontrib>XIAO NA</creatorcontrib><creatorcontrib>NIE ZHENGPU</creatorcontrib><creatorcontrib>LAI JI</creatorcontrib><creatorcontrib>ZENG JING</creatorcontrib><creatorcontrib>LYU BING</creatorcontrib><creatorcontrib>CHANG HAIJIAO</creatorcontrib><creatorcontrib>ZHANG SHIJUN</creatorcontrib><creatorcontrib>YANG RUI</creatorcontrib><creatorcontrib>XU XIANGSEN</creatorcontrib><creatorcontrib>WANG HAICHAO</creatorcontrib><creatorcontrib>MENG DE</creatorcontrib><creatorcontrib>XU DAWEI</creatorcontrib><creatorcontrib>LEE HYUN</creatorcontrib><creatorcontrib>GUAN JIAHENG</creatorcontrib><creatorcontrib>GAO SONG</creatorcontrib><creatorcontrib>LI SHUO</creatorcontrib><creatorcontrib>NA QIONGLAN</creatorcontrib><creatorcontrib>YAO QIGUI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>KOU XIAOXI</au><au>XIAO NA</au><au>NIE ZHENGPU</au><au>LAI JI</au><au>ZENG JING</au><au>LYU BING</au><au>CHANG HAIJIAO</au><au>ZHANG SHIJUN</au><au>YANG RUI</au><au>XU XIANGSEN</au><au>WANG HAICHAO</au><au>MENG DE</au><au>XU DAWEI</au><au>LEE HYUN</au><au>GUAN JIAHENG</au><au>GAO SONG</au><au>LI SHUO</au><au>NA QIONGLAN</au><au>YAO QIGUI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Business traffic anomaly detection model establishment method and anomaly detection method</title><date>2022-04-12</date><risdate>2022</risdate><abstract>The invention provides a business flow anomaly detection model establishment method and an anomaly detection method. The method comprises the following steps: acquiring historical power grid flow data with classification marks; performing coding processing on the historical power grid flow data to obtain a first feature vector set; inputting the first feature vector set into a multi-layer coding block of an initial anomaly detection model for processing to obtain a second feature vector set, and then inputting the second feature vector set into a multi-layer perceptron of the initial anomaly detection model to obtain a prediction result; according to the prediction result and the classification mark of the historical power grid flow data, the initial anomaly detection model is trained to obtain a trained anomaly detection model, the key information of the power grid flow data is extracted, and meanwhile, the mutual dependency relationship between the information is established, so that the reliability and acc</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN114330544A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING HANDLING RECORD CARRIERS PHYSICS PRESENTATION OF DATA RECOGNITION OF DATA RECORD CARRIERS |
title | Business traffic anomaly detection model establishment method and anomaly detection method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T16%3A58%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=KOU%20XIAOXI&rft.date=2022-04-12&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN114330544A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |