Neural network-based knowledge graph entity linking method and apparatus, and electronic device

The invention provides a knowledge graph entity linking method and device based on a neural network and electronic equipment, and aims to link an entity reference necklace in a document to a target entity of a given knowledge graph and can be used for construction and expansion of the knowledge grap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: JIA NINGNING, CHEN LIJIONG, SU SEN, CHENG XIANG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator JIA NINGNING
CHEN LIJIONG
SU SEN
CHENG XIANG
description The invention provides a knowledge graph entity linking method and device based on a neural network and electronic equipment, and aims to link an entity reference necklace in a document to a target entity of a given knowledge graph and can be used for construction and expansion of the knowledge graph. Entity reference items and entity contexts are coded by adopting a recurrent neural network by utilizing contexts and relationships of entities in a knowledge graph and graph structure relationships of neighbor entities and introducing relationship-entity pairs with importance marks of target entities; and establishing a correlation model between an entity reference item context and an entity context by using a common attention mechanism, modeling an entity by using a graph convolutional neural network, generating a comprehensive neural network model to process a text where the entity is located, and obtaining a knowledge graph entity link. In this way, the joint attention mechanism and the graph convolutional n
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN114297398A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN114297398A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN114297398A3</originalsourceid><addsrcrecordid>eNqNjbEKwjAURbs4iPoPz90OtYJ2lKI4ObmXZ3JtQ-NLSFKLf28RP8Dhcjhw4M6z5oohsCVBGl3o8ztHaOrFjRa6BbWBfUeQZNKbrJHeSEtPpM5pYpnmPQdOQ9x8FRYqBSdGkcbLKCyz2YNtxOrHRbY-n271JYd3DaJnhem6qa9FsdtW-7I6HMt_mg-h-j0y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Neural network-based knowledge graph entity linking method and apparatus, and electronic device</title><source>esp@cenet</source><creator>JIA NINGNING ; CHEN LIJIONG ; SU SEN ; CHENG XIANG</creator><creatorcontrib>JIA NINGNING ; CHEN LIJIONG ; SU SEN ; CHENG XIANG</creatorcontrib><description>The invention provides a knowledge graph entity linking method and device based on a neural network and electronic equipment, and aims to link an entity reference necklace in a document to a target entity of a given knowledge graph and can be used for construction and expansion of the knowledge graph. Entity reference items and entity contexts are coded by adopting a recurrent neural network by utilizing contexts and relationships of entities in a knowledge graph and graph structure relationships of neighbor entities and introducing relationship-entity pairs with importance marks of target entities; and establishing a correlation model between an entity reference item context and an entity context by using a common attention mechanism, modeling an entity by using a graph convolutional neural network, generating a comprehensive neural network model to process a text where the entity is located, and obtaining a knowledge graph entity link. In this way, the joint attention mechanism and the graph convolutional n</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220408&amp;DB=EPODOC&amp;CC=CN&amp;NR=114297398A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220408&amp;DB=EPODOC&amp;CC=CN&amp;NR=114297398A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>JIA NINGNING</creatorcontrib><creatorcontrib>CHEN LIJIONG</creatorcontrib><creatorcontrib>SU SEN</creatorcontrib><creatorcontrib>CHENG XIANG</creatorcontrib><title>Neural network-based knowledge graph entity linking method and apparatus, and electronic device</title><description>The invention provides a knowledge graph entity linking method and device based on a neural network and electronic equipment, and aims to link an entity reference necklace in a document to a target entity of a given knowledge graph and can be used for construction and expansion of the knowledge graph. Entity reference items and entity contexts are coded by adopting a recurrent neural network by utilizing contexts and relationships of entities in a knowledge graph and graph structure relationships of neighbor entities and introducing relationship-entity pairs with importance marks of target entities; and establishing a correlation model between an entity reference item context and an entity context by using a common attention mechanism, modeling an entity by using a graph convolutional neural network, generating a comprehensive neural network model to process a text where the entity is located, and obtaining a knowledge graph entity link. In this way, the joint attention mechanism and the graph convolutional n</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjbEKwjAURbs4iPoPz90OtYJ2lKI4ObmXZ3JtQ-NLSFKLf28RP8Dhcjhw4M6z5oohsCVBGl3o8ztHaOrFjRa6BbWBfUeQZNKbrJHeSEtPpM5pYpnmPQdOQ9x8FRYqBSdGkcbLKCyz2YNtxOrHRbY-n271JYd3DaJnhem6qa9FsdtW-7I6HMt_mg-h-j0y</recordid><startdate>20220408</startdate><enddate>20220408</enddate><creator>JIA NINGNING</creator><creator>CHEN LIJIONG</creator><creator>SU SEN</creator><creator>CHENG XIANG</creator><scope>EVB</scope></search><sort><creationdate>20220408</creationdate><title>Neural network-based knowledge graph entity linking method and apparatus, and electronic device</title><author>JIA NINGNING ; CHEN LIJIONG ; SU SEN ; CHENG XIANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN114297398A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>JIA NINGNING</creatorcontrib><creatorcontrib>CHEN LIJIONG</creatorcontrib><creatorcontrib>SU SEN</creatorcontrib><creatorcontrib>CHENG XIANG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>JIA NINGNING</au><au>CHEN LIJIONG</au><au>SU SEN</au><au>CHENG XIANG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Neural network-based knowledge graph entity linking method and apparatus, and electronic device</title><date>2022-04-08</date><risdate>2022</risdate><abstract>The invention provides a knowledge graph entity linking method and device based on a neural network and electronic equipment, and aims to link an entity reference necklace in a document to a target entity of a given knowledge graph and can be used for construction and expansion of the knowledge graph. Entity reference items and entity contexts are coded by adopting a recurrent neural network by utilizing contexts and relationships of entities in a knowledge graph and graph structure relationships of neighbor entities and introducing relationship-entity pairs with importance marks of target entities; and establishing a correlation model between an entity reference item context and an entity context by using a common attention mechanism, modeling an entity by using a graph convolutional neural network, generating a comprehensive neural network model to process a text where the entity is located, and obtaining a knowledge graph entity link. In this way, the joint attention mechanism and the graph convolutional n</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN114297398A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Neural network-based knowledge graph entity linking method and apparatus, and electronic device
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A07%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=JIA%20NINGNING&rft.date=2022-04-08&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN114297398A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true