Neuromorphic visual sensor target detection method based on spiking neural network

The invention discloses a neuromorphic visual sensor target detection method based on a pulse neural network. The method comprises the following steps: S1, training a clipped artificial neural network; s2, converting the artificial neural network into a pulse neural network; s3, the neuromorphic vis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LI DANJING, JIA YONGBIN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LI DANJING
JIA YONGBIN
description The invention discloses a neuromorphic visual sensor target detection method based on a pulse neural network. The method comprises the following steps: S1, training a clipped artificial neural network; s2, converting the artificial neural network into a pulse neural network; s3, the neuromorphic visual sensor collects picture information of the dynamic object, and inputs a space-time pulse signal into the pulse neural network after image reconstruction is carried out on the picture information; s4, the pulse neural network calculates, detects and decodes the space-time pulse signal and then outputs an image, marks the image according to a detection result, marks the position and the type of the mark in each target by using a rectangular frame, and judges a detection and identification result; and S5, verification is carried out on identification and detection results. The method is friendly to hardware and can process detection images of high-speed dynamic objects. 本发明公开了一种基于脉冲神经网络的神经形态视觉传感器目标检测方法,包括以下步骤:S1,训
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN114282647A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN114282647A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN114282647A3</originalsourceid><addsrcrecordid>eNqNjDEOwjAQBN1QIOAPxwMoEiKgRRGIKgWij4y9JFYSn-Vz4Pu44AFUo5VmZ6nuDebIE8fQO0NvJ7MeSeCFIyUdOySySDDJsacJqWdLTy2wlLcENzjfkc-NfPNIH47DWi1eehRsflyp7fXyqG87BG4hQRtks62boqjKU3mojuf9P84XgYg40Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Neuromorphic visual sensor target detection method based on spiking neural network</title><source>esp@cenet</source><creator>LI DANJING ; JIA YONGBIN</creator><creatorcontrib>LI DANJING ; JIA YONGBIN</creatorcontrib><description>The invention discloses a neuromorphic visual sensor target detection method based on a pulse neural network. The method comprises the following steps: S1, training a clipped artificial neural network; s2, converting the artificial neural network into a pulse neural network; s3, the neuromorphic visual sensor collects picture information of the dynamic object, and inputs a space-time pulse signal into the pulse neural network after image reconstruction is carried out on the picture information; s4, the pulse neural network calculates, detects and decodes the space-time pulse signal and then outputs an image, marks the image according to a detection result, marks the position and the type of the mark in each target by using a rectangular frame, and judges a detection and identification result; and S5, verification is carried out on identification and detection results. The method is friendly to hardware and can process detection images of high-speed dynamic objects. 本发明公开了一种基于脉冲神经网络的神经形态视觉传感器目标检测方法,包括以下步骤:S1,训</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220405&amp;DB=EPODOC&amp;CC=CN&amp;NR=114282647A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220405&amp;DB=EPODOC&amp;CC=CN&amp;NR=114282647A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LI DANJING</creatorcontrib><creatorcontrib>JIA YONGBIN</creatorcontrib><title>Neuromorphic visual sensor target detection method based on spiking neural network</title><description>The invention discloses a neuromorphic visual sensor target detection method based on a pulse neural network. The method comprises the following steps: S1, training a clipped artificial neural network; s2, converting the artificial neural network into a pulse neural network; s3, the neuromorphic visual sensor collects picture information of the dynamic object, and inputs a space-time pulse signal into the pulse neural network after image reconstruction is carried out on the picture information; s4, the pulse neural network calculates, detects and decodes the space-time pulse signal and then outputs an image, marks the image according to a detection result, marks the position and the type of the mark in each target by using a rectangular frame, and judges a detection and identification result; and S5, verification is carried out on identification and detection results. The method is friendly to hardware and can process detection images of high-speed dynamic objects. 本发明公开了一种基于脉冲神经网络的神经形态视觉传感器目标检测方法,包括以下步骤:S1,训</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjDEOwjAQBN1QIOAPxwMoEiKgRRGIKgWij4y9JFYSn-Vz4Pu44AFUo5VmZ6nuDebIE8fQO0NvJ7MeSeCFIyUdOySySDDJsacJqWdLTy2wlLcENzjfkc-NfPNIH47DWi1eehRsflyp7fXyqG87BG4hQRtks62boqjKU3mojuf9P84XgYg40Q</recordid><startdate>20220405</startdate><enddate>20220405</enddate><creator>LI DANJING</creator><creator>JIA YONGBIN</creator><scope>EVB</scope></search><sort><creationdate>20220405</creationdate><title>Neuromorphic visual sensor target detection method based on spiking neural network</title><author>LI DANJING ; JIA YONGBIN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN114282647A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>LI DANJING</creatorcontrib><creatorcontrib>JIA YONGBIN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LI DANJING</au><au>JIA YONGBIN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Neuromorphic visual sensor target detection method based on spiking neural network</title><date>2022-04-05</date><risdate>2022</risdate><abstract>The invention discloses a neuromorphic visual sensor target detection method based on a pulse neural network. The method comprises the following steps: S1, training a clipped artificial neural network; s2, converting the artificial neural network into a pulse neural network; s3, the neuromorphic visual sensor collects picture information of the dynamic object, and inputs a space-time pulse signal into the pulse neural network after image reconstruction is carried out on the picture information; s4, the pulse neural network calculates, detects and decodes the space-time pulse signal and then outputs an image, marks the image according to a detection result, marks the position and the type of the mark in each target by using a rectangular frame, and judges a detection and identification result; and S5, verification is carried out on identification and detection results. The method is friendly to hardware and can process detection images of high-speed dynamic objects. 本发明公开了一种基于脉冲神经网络的神经形态视觉传感器目标检测方法,包括以下步骤:S1,训</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN114282647A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title Neuromorphic visual sensor target detection method based on spiking neural network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T02%3A27%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LI%20DANJING&rft.date=2022-04-05&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN114282647A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true