Course knowledge graph joint embedding method introducing semantic constraint conditions

The invention relates to a course knowledge graph joint embedding method introducing semantic constraint conditions, and belongs to the field of computers. The method comprises the following steps of: 1, defining entities and relationships of a course knowledge graph to form structured data, and emb...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: XIONG YU, ZHANG YU, YAN MINGHE
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator XIONG YU
ZHANG YU
YAN MINGHE
description The invention relates to a course knowledge graph joint embedding method introducing semantic constraint conditions, and belongs to the field of computers. The method comprises the following steps of: 1, defining entities and relationships of a course knowledge graph to form structured data, and embedding structural information; 2, encoding directory text information in the course background information to form directory information embedding; 3, providing semantic constraint conditions under the same course category according to the brief introduction information of the course; and 4, designing a new loss function under the conditions of structure embedding, directory embedding and semantic constraint, and proposing a joint embedding method. According to the method, background information of the educational knowledge graph is fully utilized, embedding of entities and relations is more accurate, the entities can present a clustering effect in a vector space, the accuracy of entity classification tasks is impr
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN114282006A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN114282006A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN114282006A3</originalsourceid><addsrcrecordid>eNqNy0EKwjAQBdBuXIh6h_EAQltF3EpQXLly4a7EzJhGm5mQpHh9U_AArv7n8f-8uisZYyJ4s3wGQktgow49vMRxBvIPQnRswVPuBaFgFBzNRIm85uwMGOGUo54OpaLLrsCymj31kGj1y0W1Pp9u6rKhIB2loA0x5U5dm2bXHtq63h-3_2y-HIo7Tw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Course knowledge graph joint embedding method introducing semantic constraint conditions</title><source>esp@cenet</source><creator>XIONG YU ; ZHANG YU ; YAN MINGHE</creator><creatorcontrib>XIONG YU ; ZHANG YU ; YAN MINGHE</creatorcontrib><description>The invention relates to a course knowledge graph joint embedding method introducing semantic constraint conditions, and belongs to the field of computers. The method comprises the following steps of: 1, defining entities and relationships of a course knowledge graph to form structured data, and embedding structural information; 2, encoding directory text information in the course background information to form directory information embedding; 3, providing semantic constraint conditions under the same course category according to the brief introduction information of the course; and 4, designing a new loss function under the conditions of structure embedding, directory embedding and semantic constraint, and proposing a joint embedding method. According to the method, background information of the educational knowledge graph is fully utilized, embedding of entities and relations is more accurate, the entities can present a clustering effect in a vector space, the accuracy of entity classification tasks is impr</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220405&amp;DB=EPODOC&amp;CC=CN&amp;NR=114282006A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220405&amp;DB=EPODOC&amp;CC=CN&amp;NR=114282006A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>XIONG YU</creatorcontrib><creatorcontrib>ZHANG YU</creatorcontrib><creatorcontrib>YAN MINGHE</creatorcontrib><title>Course knowledge graph joint embedding method introducing semantic constraint conditions</title><description>The invention relates to a course knowledge graph joint embedding method introducing semantic constraint conditions, and belongs to the field of computers. The method comprises the following steps of: 1, defining entities and relationships of a course knowledge graph to form structured data, and embedding structural information; 2, encoding directory text information in the course background information to form directory information embedding; 3, providing semantic constraint conditions under the same course category according to the brief introduction information of the course; and 4, designing a new loss function under the conditions of structure embedding, directory embedding and semantic constraint, and proposing a joint embedding method. According to the method, background information of the educational knowledge graph is fully utilized, embedding of entities and relations is more accurate, the entities can present a clustering effect in a vector space, the accuracy of entity classification tasks is impr</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNy0EKwjAQBdBuXIh6h_EAQltF3EpQXLly4a7EzJhGm5mQpHh9U_AArv7n8f-8uisZYyJ4s3wGQktgow49vMRxBvIPQnRswVPuBaFgFBzNRIm85uwMGOGUo54OpaLLrsCymj31kGj1y0W1Pp9u6rKhIB2loA0x5U5dm2bXHtq63h-3_2y-HIo7Tw</recordid><startdate>20220405</startdate><enddate>20220405</enddate><creator>XIONG YU</creator><creator>ZHANG YU</creator><creator>YAN MINGHE</creator><scope>EVB</scope></search><sort><creationdate>20220405</creationdate><title>Course knowledge graph joint embedding method introducing semantic constraint conditions</title><author>XIONG YU ; ZHANG YU ; YAN MINGHE</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN114282006A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>XIONG YU</creatorcontrib><creatorcontrib>ZHANG YU</creatorcontrib><creatorcontrib>YAN MINGHE</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>XIONG YU</au><au>ZHANG YU</au><au>YAN MINGHE</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Course knowledge graph joint embedding method introducing semantic constraint conditions</title><date>2022-04-05</date><risdate>2022</risdate><abstract>The invention relates to a course knowledge graph joint embedding method introducing semantic constraint conditions, and belongs to the field of computers. The method comprises the following steps of: 1, defining entities and relationships of a course knowledge graph to form structured data, and embedding structural information; 2, encoding directory text information in the course background information to form directory information embedding; 3, providing semantic constraint conditions under the same course category according to the brief introduction information of the course; and 4, designing a new loss function under the conditions of structure embedding, directory embedding and semantic constraint, and proposing a joint embedding method. According to the method, background information of the educational knowledge graph is fully utilized, embedding of entities and relations is more accurate, the entities can present a clustering effect in a vector space, the accuracy of entity classification tasks is impr</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN114282006A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title Course knowledge graph joint embedding method introducing semantic constraint conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A56%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=XIONG%20YU&rft.date=2022-04-05&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN114282006A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true