Course knowledge graph joint embedding method introducing semantic constraint conditions
The invention relates to a course knowledge graph joint embedding method introducing semantic constraint conditions, and belongs to the field of computers. The method comprises the following steps of: 1, defining entities and relationships of a course knowledge graph to form structured data, and emb...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | XIONG YU ZHANG YU YAN MINGHE |
description | The invention relates to a course knowledge graph joint embedding method introducing semantic constraint conditions, and belongs to the field of computers. The method comprises the following steps of: 1, defining entities and relationships of a course knowledge graph to form structured data, and embedding structural information; 2, encoding directory text information in the course background information to form directory information embedding; 3, providing semantic constraint conditions under the same course category according to the brief introduction information of the course; and 4, designing a new loss function under the conditions of structure embedding, directory embedding and semantic constraint, and proposing a joint embedding method. According to the method, background information of the educational knowledge graph is fully utilized, embedding of entities and relations is more accurate, the entities can present a clustering effect in a vector space, the accuracy of entity classification tasks is impr |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN114282006A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN114282006A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN114282006A3</originalsourceid><addsrcrecordid>eNqNy0EKwjAQBdBuXIh6h_EAQltF3EpQXLly4a7EzJhGm5mQpHh9U_AArv7n8f-8uisZYyJ4s3wGQktgow49vMRxBvIPQnRswVPuBaFgFBzNRIm85uwMGOGUo54OpaLLrsCymj31kGj1y0W1Pp9u6rKhIB2loA0x5U5dm2bXHtq63h-3_2y-HIo7Tw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Course knowledge graph joint embedding method introducing semantic constraint conditions</title><source>esp@cenet</source><creator>XIONG YU ; ZHANG YU ; YAN MINGHE</creator><creatorcontrib>XIONG YU ; ZHANG YU ; YAN MINGHE</creatorcontrib><description>The invention relates to a course knowledge graph joint embedding method introducing semantic constraint conditions, and belongs to the field of computers. The method comprises the following steps of: 1, defining entities and relationships of a course knowledge graph to form structured data, and embedding structural information; 2, encoding directory text information in the course background information to form directory information embedding; 3, providing semantic constraint conditions under the same course category according to the brief introduction information of the course; and 4, designing a new loss function under the conditions of structure embedding, directory embedding and semantic constraint, and proposing a joint embedding method. According to the method, background information of the educational knowledge graph is fully utilized, embedding of entities and relations is more accurate, the entities can present a clustering effect in a vector space, the accuracy of entity classification tasks is impr</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220405&DB=EPODOC&CC=CN&NR=114282006A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220405&DB=EPODOC&CC=CN&NR=114282006A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>XIONG YU</creatorcontrib><creatorcontrib>ZHANG YU</creatorcontrib><creatorcontrib>YAN MINGHE</creatorcontrib><title>Course knowledge graph joint embedding method introducing semantic constraint conditions</title><description>The invention relates to a course knowledge graph joint embedding method introducing semantic constraint conditions, and belongs to the field of computers. The method comprises the following steps of: 1, defining entities and relationships of a course knowledge graph to form structured data, and embedding structural information; 2, encoding directory text information in the course background information to form directory information embedding; 3, providing semantic constraint conditions under the same course category according to the brief introduction information of the course; and 4, designing a new loss function under the conditions of structure embedding, directory embedding and semantic constraint, and proposing a joint embedding method. According to the method, background information of the educational knowledge graph is fully utilized, embedding of entities and relations is more accurate, the entities can present a clustering effect in a vector space, the accuracy of entity classification tasks is impr</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNy0EKwjAQBdBuXIh6h_EAQltF3EpQXLly4a7EzJhGm5mQpHh9U_AArv7n8f-8uisZYyJ4s3wGQktgow49vMRxBvIPQnRswVPuBaFgFBzNRIm85uwMGOGUo54OpaLLrsCymj31kGj1y0W1Pp9u6rKhIB2loA0x5U5dm2bXHtq63h-3_2y-HIo7Tw</recordid><startdate>20220405</startdate><enddate>20220405</enddate><creator>XIONG YU</creator><creator>ZHANG YU</creator><creator>YAN MINGHE</creator><scope>EVB</scope></search><sort><creationdate>20220405</creationdate><title>Course knowledge graph joint embedding method introducing semantic constraint conditions</title><author>XIONG YU ; ZHANG YU ; YAN MINGHE</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN114282006A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>XIONG YU</creatorcontrib><creatorcontrib>ZHANG YU</creatorcontrib><creatorcontrib>YAN MINGHE</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>XIONG YU</au><au>ZHANG YU</au><au>YAN MINGHE</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Course knowledge graph joint embedding method introducing semantic constraint conditions</title><date>2022-04-05</date><risdate>2022</risdate><abstract>The invention relates to a course knowledge graph joint embedding method introducing semantic constraint conditions, and belongs to the field of computers. The method comprises the following steps of: 1, defining entities and relationships of a course knowledge graph to form structured data, and embedding structural information; 2, encoding directory text information in the course background information to form directory information embedding; 3, providing semantic constraint conditions under the same course category according to the brief introduction information of the course; and 4, designing a new loss function under the conditions of structure embedding, directory embedding and semantic constraint, and proposing a joint embedding method. According to the method, background information of the educational knowledge graph is fully utilized, embedding of entities and relations is more accurate, the entities can present a clustering effect in a vector space, the accuracy of entity classification tasks is impr</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN114282006A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING HANDLING RECORD CARRIERS PHYSICS PRESENTATION OF DATA RECOGNITION OF DATA RECORD CARRIERS |
title | Course knowledge graph joint embedding method introducing semantic constraint conditions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A56%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=XIONG%20YU&rft.date=2022-04-05&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN114282006A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |