Weld joint quality detection method based on Transform neural network

The invention discloses a weld joint quality detection method based on a Transform neural network, which comprises the following steps of: S1, additionally arranging a high-speed capacity molten pool monitoring camera at the end, close to a welding gun, of a welding manipulator, acquiring welding sh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: MA CHENG, WEI KAI, ZHU XINYING, GAO XIANGYU, CHEN MIN, SUN YULING, LI CONGCONG, WANG JIWEI, LI JIAHUI, ZHANG XUNBING, SUN XUEBEI, WANG BIN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator MA CHENG
WEI KAI
ZHU XINYING
GAO XIANGYU
CHEN MIN
SUN YULING
LI CONGCONG
WANG JIWEI
LI JIAHUI
ZHANG XUNBING
SUN XUEBEI
WANG BIN
description The invention discloses a weld joint quality detection method based on a Transform neural network, which comprises the following steps of: S1, additionally arranging a high-speed capacity molten pool monitoring camera at the end, close to a welding gun, of a welding manipulator, acquiring welding shooting image data in real time, and monitoring the states of an electric arc, a molten pool, a groove and the like; s2, basic data enhancement is carried out on the acquired data, a multi-image overlapping enhancement method is used, and the detection efficiency of small targets such as welding seams is improved; s3, a visual Transform neural network welding seam recognition model based on self-attention is constructed; s4, visualizing the change of the training process of the model by adopting a multi-modal related attention method, and adjusting the structure of the model; and S5, detecting the quality of the welding seam by using the trained model. According to the method, the data has relatively high robustness
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN114255220A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN114255220A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN114255220A3</originalsourceid><addsrcrecordid>eNrjZHANT81JUcjKz8wrUSgsTczJLKlUSEktSU0uyczPU8hNLcnIT1FISixOTVEA8kOKEvOK0_KLchXyUkuLEnOAVEl5flE2DwNrWmJOcSovlOZmUHRzDXH20E0tyI9PLS5ITE4Fqox39jM0NDEyNTUyMnA0JkYNAAhFM1o</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Weld joint quality detection method based on Transform neural network</title><source>esp@cenet</source><creator>MA CHENG ; WEI KAI ; ZHU XINYING ; GAO XIANGYU ; CHEN MIN ; SUN YULING ; LI CONGCONG ; WANG JIWEI ; LI JIAHUI ; ZHANG XUNBING ; SUN XUEBEI ; WANG BIN</creator><creatorcontrib>MA CHENG ; WEI KAI ; ZHU XINYING ; GAO XIANGYU ; CHEN MIN ; SUN YULING ; LI CONGCONG ; WANG JIWEI ; LI JIAHUI ; ZHANG XUNBING ; SUN XUEBEI ; WANG BIN</creatorcontrib><description>The invention discloses a weld joint quality detection method based on a Transform neural network, which comprises the following steps of: S1, additionally arranging a high-speed capacity molten pool monitoring camera at the end, close to a welding gun, of a welding manipulator, acquiring welding shooting image data in real time, and monitoring the states of an electric arc, a molten pool, a groove and the like; s2, basic data enhancement is carried out on the acquired data, a multi-image overlapping enhancement method is used, and the detection efficiency of small targets such as welding seams is improved; s3, a visual Transform neural network welding seam recognition model based on self-attention is constructed; s4, visualizing the change of the training process of the model by adopting a multi-modal related attention method, and adjusting the structure of the model; and S5, detecting the quality of the welding seam by using the trained model. According to the method, the data has relatively high robustness</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220329&amp;DB=EPODOC&amp;CC=CN&amp;NR=114255220A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220329&amp;DB=EPODOC&amp;CC=CN&amp;NR=114255220A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>MA CHENG</creatorcontrib><creatorcontrib>WEI KAI</creatorcontrib><creatorcontrib>ZHU XINYING</creatorcontrib><creatorcontrib>GAO XIANGYU</creatorcontrib><creatorcontrib>CHEN MIN</creatorcontrib><creatorcontrib>SUN YULING</creatorcontrib><creatorcontrib>LI CONGCONG</creatorcontrib><creatorcontrib>WANG JIWEI</creatorcontrib><creatorcontrib>LI JIAHUI</creatorcontrib><creatorcontrib>ZHANG XUNBING</creatorcontrib><creatorcontrib>SUN XUEBEI</creatorcontrib><creatorcontrib>WANG BIN</creatorcontrib><title>Weld joint quality detection method based on Transform neural network</title><description>The invention discloses a weld joint quality detection method based on a Transform neural network, which comprises the following steps of: S1, additionally arranging a high-speed capacity molten pool monitoring camera at the end, close to a welding gun, of a welding manipulator, acquiring welding shooting image data in real time, and monitoring the states of an electric arc, a molten pool, a groove and the like; s2, basic data enhancement is carried out on the acquired data, a multi-image overlapping enhancement method is used, and the detection efficiency of small targets such as welding seams is improved; s3, a visual Transform neural network welding seam recognition model based on self-attention is constructed; s4, visualizing the change of the training process of the model by adopting a multi-modal related attention method, and adjusting the structure of the model; and S5, detecting the quality of the welding seam by using the trained model. According to the method, the data has relatively high robustness</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHANT81JUcjKz8wrUSgsTczJLKlUSEktSU0uyczPU8hNLcnIT1FISixOTVEA8kOKEvOK0_KLchXyUkuLEnOAVEl5flE2DwNrWmJOcSovlOZmUHRzDXH20E0tyI9PLS5ITE4Fqox39jM0NDEyNTUyMnA0JkYNAAhFM1o</recordid><startdate>20220329</startdate><enddate>20220329</enddate><creator>MA CHENG</creator><creator>WEI KAI</creator><creator>ZHU XINYING</creator><creator>GAO XIANGYU</creator><creator>CHEN MIN</creator><creator>SUN YULING</creator><creator>LI CONGCONG</creator><creator>WANG JIWEI</creator><creator>LI JIAHUI</creator><creator>ZHANG XUNBING</creator><creator>SUN XUEBEI</creator><creator>WANG BIN</creator><scope>EVB</scope></search><sort><creationdate>20220329</creationdate><title>Weld joint quality detection method based on Transform neural network</title><author>MA CHENG ; WEI KAI ; ZHU XINYING ; GAO XIANGYU ; CHEN MIN ; SUN YULING ; LI CONGCONG ; WANG JIWEI ; LI JIAHUI ; ZHANG XUNBING ; SUN XUEBEI ; WANG BIN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN114255220A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>MA CHENG</creatorcontrib><creatorcontrib>WEI KAI</creatorcontrib><creatorcontrib>ZHU XINYING</creatorcontrib><creatorcontrib>GAO XIANGYU</creatorcontrib><creatorcontrib>CHEN MIN</creatorcontrib><creatorcontrib>SUN YULING</creatorcontrib><creatorcontrib>LI CONGCONG</creatorcontrib><creatorcontrib>WANG JIWEI</creatorcontrib><creatorcontrib>LI JIAHUI</creatorcontrib><creatorcontrib>ZHANG XUNBING</creatorcontrib><creatorcontrib>SUN XUEBEI</creatorcontrib><creatorcontrib>WANG BIN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>MA CHENG</au><au>WEI KAI</au><au>ZHU XINYING</au><au>GAO XIANGYU</au><au>CHEN MIN</au><au>SUN YULING</au><au>LI CONGCONG</au><au>WANG JIWEI</au><au>LI JIAHUI</au><au>ZHANG XUNBING</au><au>SUN XUEBEI</au><au>WANG BIN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Weld joint quality detection method based on Transform neural network</title><date>2022-03-29</date><risdate>2022</risdate><abstract>The invention discloses a weld joint quality detection method based on a Transform neural network, which comprises the following steps of: S1, additionally arranging a high-speed capacity molten pool monitoring camera at the end, close to a welding gun, of a welding manipulator, acquiring welding shooting image data in real time, and monitoring the states of an electric arc, a molten pool, a groove and the like; s2, basic data enhancement is carried out on the acquired data, a multi-image overlapping enhancement method is used, and the detection efficiency of small targets such as welding seams is improved; s3, a visual Transform neural network welding seam recognition model based on self-attention is constructed; s4, visualizing the change of the training process of the model by adopting a multi-modal related attention method, and adjusting the structure of the model; and S5, detecting the quality of the welding seam by using the trained model. According to the method, the data has relatively high robustness</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN114255220A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
HANDLING RECORD CARRIERS
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title Weld joint quality detection method based on Transform neural network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T04%3A01%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=MA%20CHENG&rft.date=2022-03-29&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN114255220A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true