Ray double-layer scheduling method and device based on reinforcement learning and electronic equipment
The invention provides a Ray double-layer scheduling method and device based on reinforcement learning and electronic device.The Ray double-layer scheduling method based on reinforcement learning comprises the steps that a cluster task queue, resource node cluster information and resource node clust...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | ZHANG YONGJUN GUAN YANXIA LI YUAN LIU XUNYUN XU XINHAI LIU YUNTAO |
description | The invention provides a Ray double-layer scheduling method and device based on reinforcement learning and electronic device.The Ray double-layer scheduling method based on reinforcement learning comprises the steps that a cluster task queue, resource node cluster information and resource node cluster task queue information are obtained, and a target decision action is determined based on a preset Ray double-layer scheduling model; wherein the preset Ray double-layer scheduling model comprises the step of determining the target decision action after reinforcement learning based on the resource node cluster information and the resource node cluster task queue information; and scheduling a to-be-scheduled task in a cluster task queue to the correspondingly allocated resource node based on the target decision action. By using the method provided by the invention, the purpose of determining the target decision-making action through autonomous learning is realized, so that the determined target decision-making act |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN114237869A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN114237869A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN114237869A3</originalsourceid><addsrcrecordid>eNqNy70OgjAUhmEWB6Pew_ECGBDjz2iIxsnBuJND-wFNymltiwl3b0i8AKd3ed5l1j55Iu3GxiK3PCFQVD30aI10NCD1ThOLJo2PUaCGIzQ5oQAjrQsKAySRBQeZj5nCQqXgxCjCezR-Futs0bKN2Py6yra366u65_CuRvSsIEh19SiK_a48ng7nS_mP-QKCDj_q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Ray double-layer scheduling method and device based on reinforcement learning and electronic equipment</title><source>esp@cenet</source><creator>ZHANG YONGJUN ; GUAN YANXIA ; LI YUAN ; LIU XUNYUN ; XU XINHAI ; LIU YUNTAO</creator><creatorcontrib>ZHANG YONGJUN ; GUAN YANXIA ; LI YUAN ; LIU XUNYUN ; XU XINHAI ; LIU YUNTAO</creatorcontrib><description>The invention provides a Ray double-layer scheduling method and device based on reinforcement learning and electronic device.The Ray double-layer scheduling method based on reinforcement learning comprises the steps that a cluster task queue, resource node cluster information and resource node cluster task queue information are obtained, and a target decision action is determined based on a preset Ray double-layer scheduling model; wherein the preset Ray double-layer scheduling model comprises the step of determining the target decision action after reinforcement learning based on the resource node cluster information and the resource node cluster task queue information; and scheduling a to-be-scheduled task in a cluster task queue to the correspondingly allocated resource node based on the target decision action. By using the method provided by the invention, the purpose of determining the target decision-making action through autonomous learning is realized, so that the determined target decision-making act</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220325&DB=EPODOC&CC=CN&NR=114237869A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220325&DB=EPODOC&CC=CN&NR=114237869A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHANG YONGJUN</creatorcontrib><creatorcontrib>GUAN YANXIA</creatorcontrib><creatorcontrib>LI YUAN</creatorcontrib><creatorcontrib>LIU XUNYUN</creatorcontrib><creatorcontrib>XU XINHAI</creatorcontrib><creatorcontrib>LIU YUNTAO</creatorcontrib><title>Ray double-layer scheduling method and device based on reinforcement learning and electronic equipment</title><description>The invention provides a Ray double-layer scheduling method and device based on reinforcement learning and electronic device.The Ray double-layer scheduling method based on reinforcement learning comprises the steps that a cluster task queue, resource node cluster information and resource node cluster task queue information are obtained, and a target decision action is determined based on a preset Ray double-layer scheduling model; wherein the preset Ray double-layer scheduling model comprises the step of determining the target decision action after reinforcement learning based on the resource node cluster information and the resource node cluster task queue information; and scheduling a to-be-scheduled task in a cluster task queue to the correspondingly allocated resource node based on the target decision action. By using the method provided by the invention, the purpose of determining the target decision-making action through autonomous learning is realized, so that the determined target decision-making act</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNy70OgjAUhmEWB6Pew_ECGBDjz2iIxsnBuJND-wFNymltiwl3b0i8AKd3ed5l1j55Iu3GxiK3PCFQVD30aI10NCD1ThOLJo2PUaCGIzQ5oQAjrQsKAySRBQeZj5nCQqXgxCjCezR-Futs0bKN2Py6yra366u65_CuRvSsIEh19SiK_a48ng7nS_mP-QKCDj_q</recordid><startdate>20220325</startdate><enddate>20220325</enddate><creator>ZHANG YONGJUN</creator><creator>GUAN YANXIA</creator><creator>LI YUAN</creator><creator>LIU XUNYUN</creator><creator>XU XINHAI</creator><creator>LIU YUNTAO</creator><scope>EVB</scope></search><sort><creationdate>20220325</creationdate><title>Ray double-layer scheduling method and device based on reinforcement learning and electronic equipment</title><author>ZHANG YONGJUN ; GUAN YANXIA ; LI YUAN ; LIU XUNYUN ; XU XINHAI ; LIU YUNTAO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN114237869A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHANG YONGJUN</creatorcontrib><creatorcontrib>GUAN YANXIA</creatorcontrib><creatorcontrib>LI YUAN</creatorcontrib><creatorcontrib>LIU XUNYUN</creatorcontrib><creatorcontrib>XU XINHAI</creatorcontrib><creatorcontrib>LIU YUNTAO</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHANG YONGJUN</au><au>GUAN YANXIA</au><au>LI YUAN</au><au>LIU XUNYUN</au><au>XU XINHAI</au><au>LIU YUNTAO</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Ray double-layer scheduling method and device based on reinforcement learning and electronic equipment</title><date>2022-03-25</date><risdate>2022</risdate><abstract>The invention provides a Ray double-layer scheduling method and device based on reinforcement learning and electronic device.The Ray double-layer scheduling method based on reinforcement learning comprises the steps that a cluster task queue, resource node cluster information and resource node cluster task queue information are obtained, and a target decision action is determined based on a preset Ray double-layer scheduling model; wherein the preset Ray double-layer scheduling model comprises the step of determining the target decision action after reinforcement learning based on the resource node cluster information and the resource node cluster task queue information; and scheduling a to-be-scheduled task in a cluster task queue to the correspondingly allocated resource node based on the target decision action. By using the method provided by the invention, the purpose of determining the target decision-making action through autonomous learning is realized, so that the determined target decision-making act</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN114237869A |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | Ray double-layer scheduling method and device based on reinforcement learning and electronic equipment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T14%3A28%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHANG%20YONGJUN&rft.date=2022-03-25&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN114237869A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |