Power plant power generation optimization method, device and equipment based on genetic algorithm

The invention provides a genetic algorithm-based power generation optimization method for a power plant. The method comprises the following steps of: dividing a to-be-optimized long-period time range into a plurality of equal-length time periods; designing an optimization objective function based on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ZHANG ZHAOYU, JI JINGJIN, SUN YIDONG, WANG HAOTONG, WEI MING
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator ZHANG ZHAOYU
JI JINGJIN
SUN YIDONG
WANG HAOTONG
WEI MING
description The invention provides a genetic algorithm-based power generation optimization method for a power plant. The method comprises the following steps of: dividing a to-be-optimized long-period time range into a plurality of equal-length time periods; designing an optimization objective function based on the economy objective and the emission objective, and designing an operation constraint function based on the operation constraint condition; and establishing a multi-objective optimization problem mathematical model of the long-period power generation plan, calculating a Pareto optimal frontier solution set of the model based on a genetic algorithm, selecting individuals in the Pareto optimal frontier solution set according to preset target preference, and obtaining a plan power generation power optimization scheme corresponding to each time period. According to the method provided by the invention, the multi-target optimal power generation plan solution set is searched through the genetic algorithm according to
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN114218871A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN114218871A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN114218871A3</originalsourceid><addsrcrecordid>eNqNi7sKwkAQRdNYiPoPY6_FqmDaEBQrsbAP4-6YDOzL3VHBrzdRP8DqngvnjAs8hScliBa9QPxwS54SCgcPIQo7fn2PI-mCWYChB2sC9AbodufoqE8vmMlAbw21sAa0bUgsnZsWoyvaTLPfTor5fneuD0uKoaEcUQ9FUx-V2qxUWW5Vtf7HeQNPHD4g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Power plant power generation optimization method, device and equipment based on genetic algorithm</title><source>esp@cenet</source><creator>ZHANG ZHAOYU ; JI JINGJIN ; SUN YIDONG ; WANG HAOTONG ; WEI MING</creator><creatorcontrib>ZHANG ZHAOYU ; JI JINGJIN ; SUN YIDONG ; WANG HAOTONG ; WEI MING</creatorcontrib><description>The invention provides a genetic algorithm-based power generation optimization method for a power plant. The method comprises the following steps of: dividing a to-be-optimized long-period time range into a plurality of equal-length time periods; designing an optimization objective function based on the economy objective and the emission objective, and designing an operation constraint function based on the operation constraint condition; and establishing a multi-objective optimization problem mathematical model of the long-period power generation plan, calculating a Pareto optimal frontier solution set of the model based on a genetic algorithm, selecting individuals in the Pareto optimal frontier solution set according to preset target preference, and obtaining a plan power generation power optimization scheme corresponding to each time period. According to the method provided by the invention, the multi-target optimal power generation plan solution set is searched through the genetic algorithm according to</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220322&amp;DB=EPODOC&amp;CC=CN&amp;NR=114218871A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220322&amp;DB=EPODOC&amp;CC=CN&amp;NR=114218871A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHANG ZHAOYU</creatorcontrib><creatorcontrib>JI JINGJIN</creatorcontrib><creatorcontrib>SUN YIDONG</creatorcontrib><creatorcontrib>WANG HAOTONG</creatorcontrib><creatorcontrib>WEI MING</creatorcontrib><title>Power plant power generation optimization method, device and equipment based on genetic algorithm</title><description>The invention provides a genetic algorithm-based power generation optimization method for a power plant. The method comprises the following steps of: dividing a to-be-optimized long-period time range into a plurality of equal-length time periods; designing an optimization objective function based on the economy objective and the emission objective, and designing an operation constraint function based on the operation constraint condition; and establishing a multi-objective optimization problem mathematical model of the long-period power generation plan, calculating a Pareto optimal frontier solution set of the model based on a genetic algorithm, selecting individuals in the Pareto optimal frontier solution set according to preset target preference, and obtaining a plan power generation power optimization scheme corresponding to each time period. According to the method provided by the invention, the multi-target optimal power generation plan solution set is searched through the genetic algorithm according to</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNi7sKwkAQRdNYiPoPY6_FqmDaEBQrsbAP4-6YDOzL3VHBrzdRP8DqngvnjAs8hScliBa9QPxwS54SCgcPIQo7fn2PI-mCWYChB2sC9AbodufoqE8vmMlAbw21sAa0bUgsnZsWoyvaTLPfTor5fneuD0uKoaEcUQ9FUx-V2qxUWW5Vtf7HeQNPHD4g</recordid><startdate>20220322</startdate><enddate>20220322</enddate><creator>ZHANG ZHAOYU</creator><creator>JI JINGJIN</creator><creator>SUN YIDONG</creator><creator>WANG HAOTONG</creator><creator>WEI MING</creator><scope>EVB</scope></search><sort><creationdate>20220322</creationdate><title>Power plant power generation optimization method, device and equipment based on genetic algorithm</title><author>ZHANG ZHAOYU ; JI JINGJIN ; SUN YIDONG ; WANG HAOTONG ; WEI MING</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN114218871A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHANG ZHAOYU</creatorcontrib><creatorcontrib>JI JINGJIN</creatorcontrib><creatorcontrib>SUN YIDONG</creatorcontrib><creatorcontrib>WANG HAOTONG</creatorcontrib><creatorcontrib>WEI MING</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHANG ZHAOYU</au><au>JI JINGJIN</au><au>SUN YIDONG</au><au>WANG HAOTONG</au><au>WEI MING</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Power plant power generation optimization method, device and equipment based on genetic algorithm</title><date>2022-03-22</date><risdate>2022</risdate><abstract>The invention provides a genetic algorithm-based power generation optimization method for a power plant. The method comprises the following steps of: dividing a to-be-optimized long-period time range into a plurality of equal-length time periods; designing an optimization objective function based on the economy objective and the emission objective, and designing an operation constraint function based on the operation constraint condition; and establishing a multi-objective optimization problem mathematical model of the long-period power generation plan, calculating a Pareto optimal frontier solution set of the model based on a genetic algorithm, selecting individuals in the Pareto optimal frontier solution set according to preset target preference, and obtaining a plan power generation power optimization scheme corresponding to each time period. According to the method provided by the invention, the multi-target optimal power generation plan solution set is searched through the genetic algorithm according to</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN114218871A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Power plant power generation optimization method, device and equipment based on genetic algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T09%3A42%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHANG%20ZHAOYU&rft.date=2022-03-22&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN114218871A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true