Intelligent contract vulnerability detection method based on multi-task learning

The invention discloses an intelligent contract vulnerability detection method based on multi-task learning. An intelligent contract vulnerability detection technology is realized by using a multi-task learning framework based on hard parameter sharing. Firstly, in a data preparation stage, an intel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: KINBI, DING JINFEI, BU KUIJIAN, ZHOU KUO, WANG MENGXIAO, HAN HONGGUI, LI DONGMENG, WANG XI, HUANG JING
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator KINBI
DING JINFEI
BU KUIJIAN
ZHOU KUO
WANG MENGXIAO
HAN HONGGUI
LI DONGMENG
WANG XI
HUANG JING
description The invention discloses an intelligent contract vulnerability detection method based on multi-task learning. An intelligent contract vulnerability detection technology is realized by using a multi-task learning framework based on hard parameter sharing. Firstly, in a data preparation stage, an intelligent contract data set is cleaned, and vulnerability classification and label marking are performed through an existing detection tool; in the data preprocessing stage, an intelligent contract sample source code is compiled to form a byte code, then the byte code is cleaned, then decompiled and converted into an operation code sequence, and input of a model is formed; then, in a model construction stage, constructing an intelligent contract detection model based on multi-task learning; and finally, in a training stage, according to the operation code sequence obtained in the data preprocessing stage, inputting the operation code sequence into the model for training so as to realize judgment and detection of vulne
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN114218580A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN114218580A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN114218580A3</originalsourceid><addsrcrecordid>eNqNyj0KwkAQhuE0FqLeYTxAwPgDaSUo2oiFfZhsvsTFcTbsTgRvL4IHsHp54J1m17MaRHwPNXJBLbIzeo2iiNx48famFgZnPig9YffQUsMJLX09ivncOD1IwFG99vNs0rEkLH6dZcvj4VadcgyhRhrYQWF1dSmK7bood-Vqv_nn-QAKHzgR</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Intelligent contract vulnerability detection method based on multi-task learning</title><source>esp@cenet</source><creator>KINBI ; DING JINFEI ; BU KUIJIAN ; ZHOU KUO ; WANG MENGXIAO ; HAN HONGGUI ; LI DONGMENG ; WANG XI ; HUANG JING</creator><creatorcontrib>KINBI ; DING JINFEI ; BU KUIJIAN ; ZHOU KUO ; WANG MENGXIAO ; HAN HONGGUI ; LI DONGMENG ; WANG XI ; HUANG JING</creatorcontrib><description>The invention discloses an intelligent contract vulnerability detection method based on multi-task learning. An intelligent contract vulnerability detection technology is realized by using a multi-task learning framework based on hard parameter sharing. Firstly, in a data preparation stage, an intelligent contract data set is cleaned, and vulnerability classification and label marking are performed through an existing detection tool; in the data preprocessing stage, an intelligent contract sample source code is compiled to form a byte code, then the byte code is cleaned, then decompiled and converted into an operation code sequence, and input of a model is formed; then, in a model construction stage, constructing an intelligent contract detection model based on multi-task learning; and finally, in a training stage, according to the operation code sequence obtained in the data preprocessing stage, inputting the operation code sequence into the model for training so as to realize judgment and detection of vulne</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220322&amp;DB=EPODOC&amp;CC=CN&amp;NR=114218580A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76418</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220322&amp;DB=EPODOC&amp;CC=CN&amp;NR=114218580A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>KINBI</creatorcontrib><creatorcontrib>DING JINFEI</creatorcontrib><creatorcontrib>BU KUIJIAN</creatorcontrib><creatorcontrib>ZHOU KUO</creatorcontrib><creatorcontrib>WANG MENGXIAO</creatorcontrib><creatorcontrib>HAN HONGGUI</creatorcontrib><creatorcontrib>LI DONGMENG</creatorcontrib><creatorcontrib>WANG XI</creatorcontrib><creatorcontrib>HUANG JING</creatorcontrib><title>Intelligent contract vulnerability detection method based on multi-task learning</title><description>The invention discloses an intelligent contract vulnerability detection method based on multi-task learning. An intelligent contract vulnerability detection technology is realized by using a multi-task learning framework based on hard parameter sharing. Firstly, in a data preparation stage, an intelligent contract data set is cleaned, and vulnerability classification and label marking are performed through an existing detection tool; in the data preprocessing stage, an intelligent contract sample source code is compiled to form a byte code, then the byte code is cleaned, then decompiled and converted into an operation code sequence, and input of a model is formed; then, in a model construction stage, constructing an intelligent contract detection model based on multi-task learning; and finally, in a training stage, according to the operation code sequence obtained in the data preprocessing stage, inputting the operation code sequence into the model for training so as to realize judgment and detection of vulne</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyj0KwkAQhuE0FqLeYTxAwPgDaSUo2oiFfZhsvsTFcTbsTgRvL4IHsHp54J1m17MaRHwPNXJBLbIzeo2iiNx48famFgZnPig9YffQUsMJLX09ivncOD1IwFG99vNs0rEkLH6dZcvj4VadcgyhRhrYQWF1dSmK7bood-Vqv_nn-QAKHzgR</recordid><startdate>20220322</startdate><enddate>20220322</enddate><creator>KINBI</creator><creator>DING JINFEI</creator><creator>BU KUIJIAN</creator><creator>ZHOU KUO</creator><creator>WANG MENGXIAO</creator><creator>HAN HONGGUI</creator><creator>LI DONGMENG</creator><creator>WANG XI</creator><creator>HUANG JING</creator><scope>EVB</scope></search><sort><creationdate>20220322</creationdate><title>Intelligent contract vulnerability detection method based on multi-task learning</title><author>KINBI ; DING JINFEI ; BU KUIJIAN ; ZHOU KUO ; WANG MENGXIAO ; HAN HONGGUI ; LI DONGMENG ; WANG XI ; HUANG JING</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN114218580A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>KINBI</creatorcontrib><creatorcontrib>DING JINFEI</creatorcontrib><creatorcontrib>BU KUIJIAN</creatorcontrib><creatorcontrib>ZHOU KUO</creatorcontrib><creatorcontrib>WANG MENGXIAO</creatorcontrib><creatorcontrib>HAN HONGGUI</creatorcontrib><creatorcontrib>LI DONGMENG</creatorcontrib><creatorcontrib>WANG XI</creatorcontrib><creatorcontrib>HUANG JING</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>KINBI</au><au>DING JINFEI</au><au>BU KUIJIAN</au><au>ZHOU KUO</au><au>WANG MENGXIAO</au><au>HAN HONGGUI</au><au>LI DONGMENG</au><au>WANG XI</au><au>HUANG JING</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Intelligent contract vulnerability detection method based on multi-task learning</title><date>2022-03-22</date><risdate>2022</risdate><abstract>The invention discloses an intelligent contract vulnerability detection method based on multi-task learning. An intelligent contract vulnerability detection technology is realized by using a multi-task learning framework based on hard parameter sharing. Firstly, in a data preparation stage, an intelligent contract data set is cleaned, and vulnerability classification and label marking are performed through an existing detection tool; in the data preprocessing stage, an intelligent contract sample source code is compiled to form a byte code, then the byte code is cleaned, then decompiled and converted into an operation code sequence, and input of a model is formed; then, in a model construction stage, constructing an intelligent contract detection model based on multi-task learning; and finally, in a training stage, according to the operation code sequence obtained in the data preprocessing stage, inputting the operation code sequence into the model for training so as to realize judgment and detection of vulne</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN114218580A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title Intelligent contract vulnerability detection method based on multi-task learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T21%3A59%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=KINBI&rft.date=2022-03-22&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN114218580A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true