Online boiler combustion optimization method based on historical working conditions

The invention relates to a boiler combustion online optimization method based on historical working conditions. The boiler combustion online optimization method comprises the following steps: defining optimization targets as boiler efficiency and NOx emission concentration; operating data of the boi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: YUE JUNFENG, XU WENTAO, CAO GEHAN, WANG YA'OU, LI YUXIN, CHEN BO, HUANG YAJI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator YUE JUNFENG
XU WENTAO
CAO GEHAN
WANG YA'OU
LI YUXIN
CHEN BO
HUANG YAJI
description The invention relates to a boiler combustion online optimization method based on historical working conditions. The boiler combustion online optimization method comprises the following steps: defining optimization targets as boiler efficiency and NOx emission concentration; operating data of the boiler are collected, abnormal values are removed, and steady-state working conditions are judged; then, a K-means clustering method is adopted to represent the load of the external constraint condition of the boiler and the relative coal quality coefficient as division indexes, and the boiler operation working conditions are divided; and finally, optimizing the boiler efficiency and the NOx emission concentration by adopting a multi-target fuzzy optimization method. According to the method, when the K value of the K-means clustering is determined, the elbow amplification is adopted to determine the K value, and the data range participating in classification is pre-judged through data distribution, so that the accurac
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN114186476A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN114186476A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN114186476A3</originalsourceid><addsrcrecordid>eNrjZAj2z8vJzEtVSMrPzEktUkjOz00qLS7JzM9TyC8oyczNrEoEc3JTSzLyUxSSEotTUxSA_IzM4pL8oszkxByF8vyi7My8dKDWvJRMkOJiHgbWtMSc4lReKM3NoOjmGuLsoZtakB-fWlyQmJyal1oS7-xnaGhiaGFmYm7maEyMGgDXaTl8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Online boiler combustion optimization method based on historical working conditions</title><source>esp@cenet</source><creator>YUE JUNFENG ; XU WENTAO ; CAO GEHAN ; WANG YA'OU ; LI YUXIN ; CHEN BO ; HUANG YAJI</creator><creatorcontrib>YUE JUNFENG ; XU WENTAO ; CAO GEHAN ; WANG YA'OU ; LI YUXIN ; CHEN BO ; HUANG YAJI</creatorcontrib><description>The invention relates to a boiler combustion online optimization method based on historical working conditions. The boiler combustion online optimization method comprises the following steps: defining optimization targets as boiler efficiency and NOx emission concentration; operating data of the boiler are collected, abnormal values are removed, and steady-state working conditions are judged; then, a K-means clustering method is adopted to represent the load of the external constraint condition of the boiler and the relative coal quality coefficient as division indexes, and the boiler operation working conditions are divided; and finally, optimizing the boiler efficiency and the NOx emission concentration by adopting a multi-target fuzzy optimization method. According to the method, when the K value of the K-means clustering is determined, the elbow amplification is adopted to determine the K value, and the data range participating in classification is pre-judged through data distribution, so that the accurac</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220315&amp;DB=EPODOC&amp;CC=CN&amp;NR=114186476A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220315&amp;DB=EPODOC&amp;CC=CN&amp;NR=114186476A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>YUE JUNFENG</creatorcontrib><creatorcontrib>XU WENTAO</creatorcontrib><creatorcontrib>CAO GEHAN</creatorcontrib><creatorcontrib>WANG YA'OU</creatorcontrib><creatorcontrib>LI YUXIN</creatorcontrib><creatorcontrib>CHEN BO</creatorcontrib><creatorcontrib>HUANG YAJI</creatorcontrib><title>Online boiler combustion optimization method based on historical working conditions</title><description>The invention relates to a boiler combustion online optimization method based on historical working conditions. The boiler combustion online optimization method comprises the following steps: defining optimization targets as boiler efficiency and NOx emission concentration; operating data of the boiler are collected, abnormal values are removed, and steady-state working conditions are judged; then, a K-means clustering method is adopted to represent the load of the external constraint condition of the boiler and the relative coal quality coefficient as division indexes, and the boiler operation working conditions are divided; and finally, optimizing the boiler efficiency and the NOx emission concentration by adopting a multi-target fuzzy optimization method. According to the method, when the K value of the K-means clustering is determined, the elbow amplification is adopted to determine the K value, and the data range participating in classification is pre-judged through data distribution, so that the accurac</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZAj2z8vJzEtVSMrPzEktUkjOz00qLS7JzM9TyC8oyczNrEoEc3JTSzLyUxSSEotTUxSA_IzM4pL8oszkxByF8vyi7My8dKDWvJRMkOJiHgbWtMSc4lReKM3NoOjmGuLsoZtakB-fWlyQmJyal1oS7-xnaGhiaGFmYm7maEyMGgDXaTl8</recordid><startdate>20220315</startdate><enddate>20220315</enddate><creator>YUE JUNFENG</creator><creator>XU WENTAO</creator><creator>CAO GEHAN</creator><creator>WANG YA'OU</creator><creator>LI YUXIN</creator><creator>CHEN BO</creator><creator>HUANG YAJI</creator><scope>EVB</scope></search><sort><creationdate>20220315</creationdate><title>Online boiler combustion optimization method based on historical working conditions</title><author>YUE JUNFENG ; XU WENTAO ; CAO GEHAN ; WANG YA'OU ; LI YUXIN ; CHEN BO ; HUANG YAJI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN114186476A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>YUE JUNFENG</creatorcontrib><creatorcontrib>XU WENTAO</creatorcontrib><creatorcontrib>CAO GEHAN</creatorcontrib><creatorcontrib>WANG YA'OU</creatorcontrib><creatorcontrib>LI YUXIN</creatorcontrib><creatorcontrib>CHEN BO</creatorcontrib><creatorcontrib>HUANG YAJI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>YUE JUNFENG</au><au>XU WENTAO</au><au>CAO GEHAN</au><au>WANG YA'OU</au><au>LI YUXIN</au><au>CHEN BO</au><au>HUANG YAJI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Online boiler combustion optimization method based on historical working conditions</title><date>2022-03-15</date><risdate>2022</risdate><abstract>The invention relates to a boiler combustion online optimization method based on historical working conditions. The boiler combustion online optimization method comprises the following steps: defining optimization targets as boiler efficiency and NOx emission concentration; operating data of the boiler are collected, abnormal values are removed, and steady-state working conditions are judged; then, a K-means clustering method is adopted to represent the load of the external constraint condition of the boiler and the relative coal quality coefficient as division indexes, and the boiler operation working conditions are divided; and finally, optimizing the boiler efficiency and the NOx emission concentration by adopting a multi-target fuzzy optimization method. According to the method, when the K value of the K-means clustering is determined, the elbow amplification is adopted to determine the K value, and the data range participating in classification is pre-judged through data distribution, so that the accurac</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN114186476A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title Online boiler combustion optimization method based on historical working conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A55%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=YUE%20JUNFENG&rft.date=2022-03-15&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN114186476A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true