Online boiler combustion optimization method based on historical working conditions
The invention relates to a boiler combustion online optimization method based on historical working conditions. The boiler combustion online optimization method comprises the following steps: defining optimization targets as boiler efficiency and NOx emission concentration; operating data of the boi...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | YUE JUNFENG XU WENTAO CAO GEHAN WANG YA'OU LI YUXIN CHEN BO HUANG YAJI |
description | The invention relates to a boiler combustion online optimization method based on historical working conditions. The boiler combustion online optimization method comprises the following steps: defining optimization targets as boiler efficiency and NOx emission concentration; operating data of the boiler are collected, abnormal values are removed, and steady-state working conditions are judged; then, a K-means clustering method is adopted to represent the load of the external constraint condition of the boiler and the relative coal quality coefficient as division indexes, and the boiler operation working conditions are divided; and finally, optimizing the boiler efficiency and the NOx emission concentration by adopting a multi-target fuzzy optimization method. According to the method, when the K value of the K-means clustering is determined, the elbow amplification is adopted to determine the K value, and the data range participating in classification is pre-judged through data distribution, so that the accurac |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN114186476A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN114186476A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN114186476A3</originalsourceid><addsrcrecordid>eNrjZAj2z8vJzEtVSMrPzEktUkjOz00qLS7JzM9TyC8oyczNrEoEc3JTSzLyUxSSEotTUxSA_IzM4pL8oszkxByF8vyi7My8dKDWvJRMkOJiHgbWtMSc4lReKM3NoOjmGuLsoZtakB-fWlyQmJyal1oS7-xnaGhiaGFmYm7maEyMGgDXaTl8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Online boiler combustion optimization method based on historical working conditions</title><source>esp@cenet</source><creator>YUE JUNFENG ; XU WENTAO ; CAO GEHAN ; WANG YA'OU ; LI YUXIN ; CHEN BO ; HUANG YAJI</creator><creatorcontrib>YUE JUNFENG ; XU WENTAO ; CAO GEHAN ; WANG YA'OU ; LI YUXIN ; CHEN BO ; HUANG YAJI</creatorcontrib><description>The invention relates to a boiler combustion online optimization method based on historical working conditions. The boiler combustion online optimization method comprises the following steps: defining optimization targets as boiler efficiency and NOx emission concentration; operating data of the boiler are collected, abnormal values are removed, and steady-state working conditions are judged; then, a K-means clustering method is adopted to represent the load of the external constraint condition of the boiler and the relative coal quality coefficient as division indexes, and the boiler operation working conditions are divided; and finally, optimizing the boiler efficiency and the NOx emission concentration by adopting a multi-target fuzzy optimization method. According to the method, when the K value of the K-means clustering is determined, the elbow amplification is adopted to determine the K value, and the data range participating in classification is pre-judged through data distribution, so that the accurac</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220315&DB=EPODOC&CC=CN&NR=114186476A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220315&DB=EPODOC&CC=CN&NR=114186476A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>YUE JUNFENG</creatorcontrib><creatorcontrib>XU WENTAO</creatorcontrib><creatorcontrib>CAO GEHAN</creatorcontrib><creatorcontrib>WANG YA'OU</creatorcontrib><creatorcontrib>LI YUXIN</creatorcontrib><creatorcontrib>CHEN BO</creatorcontrib><creatorcontrib>HUANG YAJI</creatorcontrib><title>Online boiler combustion optimization method based on historical working conditions</title><description>The invention relates to a boiler combustion online optimization method based on historical working conditions. The boiler combustion online optimization method comprises the following steps: defining optimization targets as boiler efficiency and NOx emission concentration; operating data of the boiler are collected, abnormal values are removed, and steady-state working conditions are judged; then, a K-means clustering method is adopted to represent the load of the external constraint condition of the boiler and the relative coal quality coefficient as division indexes, and the boiler operation working conditions are divided; and finally, optimizing the boiler efficiency and the NOx emission concentration by adopting a multi-target fuzzy optimization method. According to the method, when the K value of the K-means clustering is determined, the elbow amplification is adopted to determine the K value, and the data range participating in classification is pre-judged through data distribution, so that the accurac</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZAj2z8vJzEtVSMrPzEktUkjOz00qLS7JzM9TyC8oyczNrEoEc3JTSzLyUxSSEotTUxSA_IzM4pL8oszkxByF8vyi7My8dKDWvJRMkOJiHgbWtMSc4lReKM3NoOjmGuLsoZtakB-fWlyQmJyal1oS7-xnaGhiaGFmYm7maEyMGgDXaTl8</recordid><startdate>20220315</startdate><enddate>20220315</enddate><creator>YUE JUNFENG</creator><creator>XU WENTAO</creator><creator>CAO GEHAN</creator><creator>WANG YA'OU</creator><creator>LI YUXIN</creator><creator>CHEN BO</creator><creator>HUANG YAJI</creator><scope>EVB</scope></search><sort><creationdate>20220315</creationdate><title>Online boiler combustion optimization method based on historical working conditions</title><author>YUE JUNFENG ; XU WENTAO ; CAO GEHAN ; WANG YA'OU ; LI YUXIN ; CHEN BO ; HUANG YAJI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN114186476A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>YUE JUNFENG</creatorcontrib><creatorcontrib>XU WENTAO</creatorcontrib><creatorcontrib>CAO GEHAN</creatorcontrib><creatorcontrib>WANG YA'OU</creatorcontrib><creatorcontrib>LI YUXIN</creatorcontrib><creatorcontrib>CHEN BO</creatorcontrib><creatorcontrib>HUANG YAJI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>YUE JUNFENG</au><au>XU WENTAO</au><au>CAO GEHAN</au><au>WANG YA'OU</au><au>LI YUXIN</au><au>CHEN BO</au><au>HUANG YAJI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Online boiler combustion optimization method based on historical working conditions</title><date>2022-03-15</date><risdate>2022</risdate><abstract>The invention relates to a boiler combustion online optimization method based on historical working conditions. The boiler combustion online optimization method comprises the following steps: defining optimization targets as boiler efficiency and NOx emission concentration; operating data of the boiler are collected, abnormal values are removed, and steady-state working conditions are judged; then, a K-means clustering method is adopted to represent the load of the external constraint condition of the boiler and the relative coal quality coefficient as division indexes, and the boiler operation working conditions are divided; and finally, optimizing the boiler efficiency and the NOx emission concentration by adopting a multi-target fuzzy optimization method. According to the method, when the K value of the K-means clustering is determined, the elbow amplification is adopted to determine the K value, and the data range participating in classification is pre-judged through data distribution, so that the accurac</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN114186476A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING HANDLING RECORD CARRIERS PHYSICS PRESENTATION OF DATA RECOGNITION OF DATA RECORD CARRIERS |
title | Online boiler combustion optimization method based on historical working conditions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A55%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=YUE%20JUNFENG&rft.date=2022-03-15&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN114186476A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |