Prediction method and system for chemosensitivity of ovarian cancer patient based on pathological image
The invention discloses an ovarian cancer chemosensitivity prediction method and system based on pathological image analysis. The ovarian cancer chemosensitivity prediction method mainly comprises the following steps: 1, acquiring pathological tissue slice images of ovarian cancer; 2, cutting the sl...
Gespeichert in:
Hauptverfasser: | , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | LOU WEIMING DENG LIBIN LIU YUE FU FEN SHI CHAO TANG XIAOLI GAO JIANYING WU YIGUO GE SHANGHUA |
description | The invention discloses an ovarian cancer chemosensitivity prediction method and system based on pathological image analysis. The ovarian cancer chemosensitivity prediction method mainly comprises the following steps: 1, acquiring pathological tissue slice images of ovarian cancer; 2, cutting the slice image into color blocks and screening the color blocks; 3, dividing color blocks into a training set and a verification set, and inputting the training set and the verification set into a convolutional neural network for model construction and image feature extraction; 4, predicting individual chemosensitivity scores based on image features; and 5, predicting the optimized composite model by using the data of the test set, and detecting the accuracy. The prediction system comprises an ovarian tissue slice image processing module, an image feature extraction module, a feature selection and chemotherapy sensitivity score calculation module and an intelligent ovarian cancer chemotherapy sensitivity prediction modu |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN114170183A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN114170183A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN114170183A3</originalsourceid><addsrcrecordid>eNqNjDEKwkAQANNYiPqH9QGCRwRtJShWYmEf1rtNsnC3G-6WQH5vCh9gNTAMs676V6bA3lgFEtmgAVAClLkYJeg0gx8oaSEpbDyxzaAd6ISZUcCjeMowojGJwQcLBVhOixg0as8eI3DCnrbVqsNYaPfjptrfb-_mcaBRWyojehKytnk6d3Lno7vU1_qf5gsHvEBm</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Prediction method and system for chemosensitivity of ovarian cancer patient based on pathological image</title><source>esp@cenet</source><creator>LOU WEIMING ; DENG LIBIN ; LIU YUE ; FU FEN ; SHI CHAO ; TANG XIAOLI ; GAO JIANYING ; WU YIGUO ; GE SHANGHUA</creator><creatorcontrib>LOU WEIMING ; DENG LIBIN ; LIU YUE ; FU FEN ; SHI CHAO ; TANG XIAOLI ; GAO JIANYING ; WU YIGUO ; GE SHANGHUA</creatorcontrib><description>The invention discloses an ovarian cancer chemosensitivity prediction method and system based on pathological image analysis. The ovarian cancer chemosensitivity prediction method mainly comprises the following steps: 1, acquiring pathological tissue slice images of ovarian cancer; 2, cutting the slice image into color blocks and screening the color blocks; 3, dividing color blocks into a training set and a verification set, and inputting the training set and the verification set into a convolutional neural network for model construction and image feature extraction; 4, predicting individual chemosensitivity scores based on image features; and 5, predicting the optimized composite model by using the data of the test set, and detecting the accuracy. The prediction system comprises an ovarian tissue slice image processing module, an image feature extraction module, a feature selection and chemotherapy sensitivity score calculation module and an intelligent ovarian cancer chemotherapy sensitivity prediction modu</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220311&DB=EPODOC&CC=CN&NR=114170183A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220311&DB=EPODOC&CC=CN&NR=114170183A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LOU WEIMING</creatorcontrib><creatorcontrib>DENG LIBIN</creatorcontrib><creatorcontrib>LIU YUE</creatorcontrib><creatorcontrib>FU FEN</creatorcontrib><creatorcontrib>SHI CHAO</creatorcontrib><creatorcontrib>TANG XIAOLI</creatorcontrib><creatorcontrib>GAO JIANYING</creatorcontrib><creatorcontrib>WU YIGUO</creatorcontrib><creatorcontrib>GE SHANGHUA</creatorcontrib><title>Prediction method and system for chemosensitivity of ovarian cancer patient based on pathological image</title><description>The invention discloses an ovarian cancer chemosensitivity prediction method and system based on pathological image analysis. The ovarian cancer chemosensitivity prediction method mainly comprises the following steps: 1, acquiring pathological tissue slice images of ovarian cancer; 2, cutting the slice image into color blocks and screening the color blocks; 3, dividing color blocks into a training set and a verification set, and inputting the training set and the verification set into a convolutional neural network for model construction and image feature extraction; 4, predicting individual chemosensitivity scores based on image features; and 5, predicting the optimized composite model by using the data of the test set, and detecting the accuracy. The prediction system comprises an ovarian tissue slice image processing module, an image feature extraction module, a feature selection and chemotherapy sensitivity score calculation module and an intelligent ovarian cancer chemotherapy sensitivity prediction modu</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjDEKwkAQANNYiPqH9QGCRwRtJShWYmEf1rtNsnC3G-6WQH5vCh9gNTAMs676V6bA3lgFEtmgAVAClLkYJeg0gx8oaSEpbDyxzaAd6ISZUcCjeMowojGJwQcLBVhOixg0as8eI3DCnrbVqsNYaPfjptrfb-_mcaBRWyojehKytnk6d3Lno7vU1_qf5gsHvEBm</recordid><startdate>20220311</startdate><enddate>20220311</enddate><creator>LOU WEIMING</creator><creator>DENG LIBIN</creator><creator>LIU YUE</creator><creator>FU FEN</creator><creator>SHI CHAO</creator><creator>TANG XIAOLI</creator><creator>GAO JIANYING</creator><creator>WU YIGUO</creator><creator>GE SHANGHUA</creator><scope>EVB</scope></search><sort><creationdate>20220311</creationdate><title>Prediction method and system for chemosensitivity of ovarian cancer patient based on pathological image</title><author>LOU WEIMING ; DENG LIBIN ; LIU YUE ; FU FEN ; SHI CHAO ; TANG XIAOLI ; GAO JIANYING ; WU YIGUO ; GE SHANGHUA</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN114170183A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>LOU WEIMING</creatorcontrib><creatorcontrib>DENG LIBIN</creatorcontrib><creatorcontrib>LIU YUE</creatorcontrib><creatorcontrib>FU FEN</creatorcontrib><creatorcontrib>SHI CHAO</creatorcontrib><creatorcontrib>TANG XIAOLI</creatorcontrib><creatorcontrib>GAO JIANYING</creatorcontrib><creatorcontrib>WU YIGUO</creatorcontrib><creatorcontrib>GE SHANGHUA</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LOU WEIMING</au><au>DENG LIBIN</au><au>LIU YUE</au><au>FU FEN</au><au>SHI CHAO</au><au>TANG XIAOLI</au><au>GAO JIANYING</au><au>WU YIGUO</au><au>GE SHANGHUA</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Prediction method and system for chemosensitivity of ovarian cancer patient based on pathological image</title><date>2022-03-11</date><risdate>2022</risdate><abstract>The invention discloses an ovarian cancer chemosensitivity prediction method and system based on pathological image analysis. The ovarian cancer chemosensitivity prediction method mainly comprises the following steps: 1, acquiring pathological tissue slice images of ovarian cancer; 2, cutting the slice image into color blocks and screening the color blocks; 3, dividing color blocks into a training set and a verification set, and inputting the training set and the verification set into a convolutional neural network for model construction and image feature extraction; 4, predicting individual chemosensitivity scores based on image features; and 5, predicting the optimized composite model by using the data of the test set, and detecting the accuracy. The prediction system comprises an ovarian tissue slice image processing module, an image feature extraction module, a feature selection and chemotherapy sensitivity score calculation module and an intelligent ovarian cancer chemotherapy sensitivity prediction modu</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN114170183A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING HANDLING RECORD CARRIERS IMAGE DATA PROCESSING OR GENERATION, IN GENERAL PHYSICS PRESENTATION OF DATA RECOGNITION OF DATA RECORD CARRIERS |
title | Prediction method and system for chemosensitivity of ovarian cancer patient based on pathological image |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T21%3A12%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LOU%20WEIMING&rft.date=2022-03-11&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN114170183A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |