Chinese text generation method with image signal feedback
The invention discloses a Chinese text generation method with image signal feedback, which comprises the following steps: word vector generation: generating binary images from all words in a dictionary required in a bert model, enabling each word to correspond to one binary image, enabling all image...
Gespeichert in:
Hauptverfasser: | , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | HU MENG SONG HAIDONG YANG LINFENG ZHANG LEI SHI MENGXU ZHANG SHANRUI CHEN KUN LI LEI |
description | The invention discloses a Chinese text generation method with image signal feedback, which comprises the following steps: word vector generation: generating binary images from all words in a dictionary required in a bert model, enabling each word to correspond to one binary image, enabling all images to pass through a CNN (Convolutional Neural Network), obtaining the last layer output by the network as a word vector, and generating a word vector; all the characters form an image information embedding matrix; sentence vector generation: during model training, an input text generates a binary image, the binary image passes through a CNN + RNN + CTC network, the input of RNN is taken as a sentence vector, which is equivalent to that word vectors are aggregated together, and then the word vectors are integrated into a real sentence vector. According to the method, CNN is adopted for extraction of single-character image signals, CNN + RNN + CTC optical character recognition models are adopted for extraction of who |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN114140781A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN114140781A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN114140781A3</originalsourceid><addsrcrecordid>eNrjZLB0zsjMSy1OVShJrShRSE_NSy1KLMnMz1PITS3JyE9RKM8syVDIzE1MT1UozkzPS8xRSEtNTUlKTM7mYWBNS8wpTuWF0twMim6uIc4euqkF-fGpxQWJyUDDSuKd_QwNTQxNDMwtDB2NiVEDADjMLok</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Chinese text generation method with image signal feedback</title><source>esp@cenet</source><creator>HU MENG ; SONG HAIDONG ; YANG LINFENG ; ZHANG LEI ; SHI MENGXU ; ZHANG SHANRUI ; CHEN KUN ; LI LEI</creator><creatorcontrib>HU MENG ; SONG HAIDONG ; YANG LINFENG ; ZHANG LEI ; SHI MENGXU ; ZHANG SHANRUI ; CHEN KUN ; LI LEI</creatorcontrib><description>The invention discloses a Chinese text generation method with image signal feedback, which comprises the following steps: word vector generation: generating binary images from all words in a dictionary required in a bert model, enabling each word to correspond to one binary image, enabling all images to pass through a CNN (Convolutional Neural Network), obtaining the last layer output by the network as a word vector, and generating a word vector; all the characters form an image information embedding matrix; sentence vector generation: during model training, an input text generates a binary image, the binary image passes through a CNN + RNN + CTC network, the input of RNN is taken as a sentence vector, which is equivalent to that word vectors are aggregated together, and then the word vectors are integrated into a real sentence vector. According to the method, CNN is adopted for extraction of single-character image signals, CNN + RNN + CTC optical character recognition models are adopted for extraction of who</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220304&DB=EPODOC&CC=CN&NR=114140781A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220304&DB=EPODOC&CC=CN&NR=114140781A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>HU MENG</creatorcontrib><creatorcontrib>SONG HAIDONG</creatorcontrib><creatorcontrib>YANG LINFENG</creatorcontrib><creatorcontrib>ZHANG LEI</creatorcontrib><creatorcontrib>SHI MENGXU</creatorcontrib><creatorcontrib>ZHANG SHANRUI</creatorcontrib><creatorcontrib>CHEN KUN</creatorcontrib><creatorcontrib>LI LEI</creatorcontrib><title>Chinese text generation method with image signal feedback</title><description>The invention discloses a Chinese text generation method with image signal feedback, which comprises the following steps: word vector generation: generating binary images from all words in a dictionary required in a bert model, enabling each word to correspond to one binary image, enabling all images to pass through a CNN (Convolutional Neural Network), obtaining the last layer output by the network as a word vector, and generating a word vector; all the characters form an image information embedding matrix; sentence vector generation: during model training, an input text generates a binary image, the binary image passes through a CNN + RNN + CTC network, the input of RNN is taken as a sentence vector, which is equivalent to that word vectors are aggregated together, and then the word vectors are integrated into a real sentence vector. According to the method, CNN is adopted for extraction of single-character image signals, CNN + RNN + CTC optical character recognition models are adopted for extraction of who</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLB0zsjMSy1OVShJrShRSE_NSy1KLMnMz1PITS3JyE9RKM8syVDIzE1MT1UozkzPS8xRSEtNTUlKTM7mYWBNS8wpTuWF0twMim6uIc4euqkF-fGpxQWJyUDDSuKd_QwNTQxNDMwtDB2NiVEDADjMLok</recordid><startdate>20220304</startdate><enddate>20220304</enddate><creator>HU MENG</creator><creator>SONG HAIDONG</creator><creator>YANG LINFENG</creator><creator>ZHANG LEI</creator><creator>SHI MENGXU</creator><creator>ZHANG SHANRUI</creator><creator>CHEN KUN</creator><creator>LI LEI</creator><scope>EVB</scope></search><sort><creationdate>20220304</creationdate><title>Chinese text generation method with image signal feedback</title><author>HU MENG ; SONG HAIDONG ; YANG LINFENG ; ZHANG LEI ; SHI MENGXU ; ZHANG SHANRUI ; CHEN KUN ; LI LEI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN114140781A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>HU MENG</creatorcontrib><creatorcontrib>SONG HAIDONG</creatorcontrib><creatorcontrib>YANG LINFENG</creatorcontrib><creatorcontrib>ZHANG LEI</creatorcontrib><creatorcontrib>SHI MENGXU</creatorcontrib><creatorcontrib>ZHANG SHANRUI</creatorcontrib><creatorcontrib>CHEN KUN</creatorcontrib><creatorcontrib>LI LEI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>HU MENG</au><au>SONG HAIDONG</au><au>YANG LINFENG</au><au>ZHANG LEI</au><au>SHI MENGXU</au><au>ZHANG SHANRUI</au><au>CHEN KUN</au><au>LI LEI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Chinese text generation method with image signal feedback</title><date>2022-03-04</date><risdate>2022</risdate><abstract>The invention discloses a Chinese text generation method with image signal feedback, which comprises the following steps: word vector generation: generating binary images from all words in a dictionary required in a bert model, enabling each word to correspond to one binary image, enabling all images to pass through a CNN (Convolutional Neural Network), obtaining the last layer output by the network as a word vector, and generating a word vector; all the characters form an image information embedding matrix; sentence vector generation: during model training, an input text generates a binary image, the binary image passes through a CNN + RNN + CTC network, the input of RNN is taken as a sentence vector, which is equivalent to that word vectors are aggregated together, and then the word vectors are integrated into a real sentence vector. According to the method, CNN is adopted for extraction of single-character image signals, CNN + RNN + CTC optical character recognition models are adopted for extraction of who</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN114140781A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING HANDLING RECORD CARRIERS PHYSICS PRESENTATION OF DATA RECOGNITION OF DATA RECORD CARRIERS |
title | Chinese text generation method with image signal feedback |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T02%3A44%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=HU%20MENG&rft.date=2022-03-04&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN114140781A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |