Emotion analysis system and method based on syntactic feature and attention mechanism fusion

The invention discloses a sentiment analysis system and method based on syntactic feature and attention mechanism fusion in the technical field of natural language processing, and the method comprises the steps: obtaining text data, and carrying out the data set classification; after word vector emb...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LIU FENG, WANG ZHANFAN, ZHAO ZHENGLAI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LIU FENG
WANG ZHANFAN
ZHAO ZHENGLAI
description The invention discloses a sentiment analysis system and method based on syntactic feature and attention mechanism fusion in the technical field of natural language processing, and the method comprises the steps: obtaining text data, and carrying out the data set classification; after word vector embedding representation conversion is carried out on the basis of the classified text data, initial context features are extracted through a bidirectional long-short-term memory network; after the initial context features are input into a graph convolutional network, syntactic features are extracted in combination with local average pooling; performing position coding on the initial context features, inputting the initial context features into an attention model, and extracting global features in combination with global maximum pooling; and carrying out vector splicing based on the syntactic features and the global features, and inputting a full connection layer and a random inactivation layer to obtain a final resul
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN114118058A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN114118058A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN114118058A3</originalsourceid><addsrcrecordid>eNqNzEEKwjAQBdBsXIh6h_EAgkGFbqVUXLlyKZQxmdBAMynOdJHbG4oHcPX5n8dfm1eXssbMgIxjkSggRZRS7R4S6ZA9vFHIQzVSWNFpdBAIdf7QolCVePlI5AbkKAnCLHXYmlXAUWj3y43Z37pnez_QlHuSCR0xad8-rD1b2xwvzfX0j_kC6ag8QQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Emotion analysis system and method based on syntactic feature and attention mechanism fusion</title><source>esp@cenet</source><creator>LIU FENG ; WANG ZHANFAN ; ZHAO ZHENGLAI</creator><creatorcontrib>LIU FENG ; WANG ZHANFAN ; ZHAO ZHENGLAI</creatorcontrib><description>The invention discloses a sentiment analysis system and method based on syntactic feature and attention mechanism fusion in the technical field of natural language processing, and the method comprises the steps: obtaining text data, and carrying out the data set classification; after word vector embedding representation conversion is carried out on the basis of the classified text data, initial context features are extracted through a bidirectional long-short-term memory network; after the initial context features are input into a graph convolutional network, syntactic features are extracted in combination with local average pooling; performing position coding on the initial context features, inputting the initial context features into an attention model, and extracting global features in combination with global maximum pooling; and carrying out vector splicing based on the syntactic features and the global features, and inputting a full connection layer and a random inactivation layer to obtain a final resul</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220301&amp;DB=EPODOC&amp;CC=CN&amp;NR=114118058A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220301&amp;DB=EPODOC&amp;CC=CN&amp;NR=114118058A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LIU FENG</creatorcontrib><creatorcontrib>WANG ZHANFAN</creatorcontrib><creatorcontrib>ZHAO ZHENGLAI</creatorcontrib><title>Emotion analysis system and method based on syntactic feature and attention mechanism fusion</title><description>The invention discloses a sentiment analysis system and method based on syntactic feature and attention mechanism fusion in the technical field of natural language processing, and the method comprises the steps: obtaining text data, and carrying out the data set classification; after word vector embedding representation conversion is carried out on the basis of the classified text data, initial context features are extracted through a bidirectional long-short-term memory network; after the initial context features are input into a graph convolutional network, syntactic features are extracted in combination with local average pooling; performing position coding on the initial context features, inputting the initial context features into an attention model, and extracting global features in combination with global maximum pooling; and carrying out vector splicing based on the syntactic features and the global features, and inputting a full connection layer and a random inactivation layer to obtain a final resul</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNzEEKwjAQBdBsXIh6h_EAgkGFbqVUXLlyKZQxmdBAMynOdJHbG4oHcPX5n8dfm1eXssbMgIxjkSggRZRS7R4S6ZA9vFHIQzVSWNFpdBAIdf7QolCVePlI5AbkKAnCLHXYmlXAUWj3y43Z37pnez_QlHuSCR0xad8-rD1b2xwvzfX0j_kC6ag8QQ</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>LIU FENG</creator><creator>WANG ZHANFAN</creator><creator>ZHAO ZHENGLAI</creator><scope>EVB</scope></search><sort><creationdate>20220301</creationdate><title>Emotion analysis system and method based on syntactic feature and attention mechanism fusion</title><author>LIU FENG ; WANG ZHANFAN ; ZHAO ZHENGLAI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN114118058A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>LIU FENG</creatorcontrib><creatorcontrib>WANG ZHANFAN</creatorcontrib><creatorcontrib>ZHAO ZHENGLAI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LIU FENG</au><au>WANG ZHANFAN</au><au>ZHAO ZHENGLAI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Emotion analysis system and method based on syntactic feature and attention mechanism fusion</title><date>2022-03-01</date><risdate>2022</risdate><abstract>The invention discloses a sentiment analysis system and method based on syntactic feature and attention mechanism fusion in the technical field of natural language processing, and the method comprises the steps: obtaining text data, and carrying out the data set classification; after word vector embedding representation conversion is carried out on the basis of the classified text data, initial context features are extracted through a bidirectional long-short-term memory network; after the initial context features are input into a graph convolutional network, syntactic features are extracted in combination with local average pooling; performing position coding on the initial context features, inputting the initial context features into an attention model, and extracting global features in combination with global maximum pooling; and carrying out vector splicing based on the syntactic features and the global features, and inputting a full connection layer and a random inactivation layer to obtain a final resul</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN114118058A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Emotion analysis system and method based on syntactic feature and attention mechanism fusion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T21%3A45%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LIU%20FENG&rft.date=2022-03-01&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN114118058A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true