PCB (Printed Circuit Board) splicing and blanking method based on deep intelligent genetic optimization algorithm

The embodiment of the invention provides a PCB (Printed Circuit Board) splicing and blanking method based on a deep intelligent genetic optimization algorithm. The method comprises the following steps: step 1, generating an initial population; 2, calculating the fitness of the initial population, an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: DING XINGRU, LIU KAI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator DING XINGRU
LIU KAI
description The embodiment of the invention provides a PCB (Printed Circuit Board) splicing and blanking method based on a deep intelligent genetic optimization algorithm. The method comprises the following steps: step 1, generating an initial population; 2, calculating the fitness of the initial population, and obtaining the state of the initial population; step 3, when the fitness value does not reach a preset value, inputting the current state st of the population into a deep intelligent genetic optimization algorithm for optimization; and 4, repeating the step 3 until the maximum specified operation round number is reached, and outputting the layout drawing and the utilization rate of the optimal individual. According to the method, a deep reinforcement learning model SAC is used for optimizing the genetic algorithm, crossover and mutation operations are separated from a traditional genetic algorithm and serve as action spaces of agents, the agents are trained through the SAC model, the crossover and mutation operati
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN114118000A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN114118000A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN114118000A3</originalsourceid><addsrcrecordid>eNqNizEKAjEQRbexEPUOY6eFsEELWzcoVrKFvYzJuDuYTWIyNp7eLHgAm_958N60erW6gVWb2AtZ0JzMmwWagMmuIUfHhn0H6C3cHfrnCANJHwpjLkXwYIkijL1z3JEXKEPCBkIUHviDwsVC14XE0g_zavJAl2nx-1m1PB2v-ryhGG6UI5oxv-mLUjul9nVdH7b_OF_o0ELo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>PCB (Printed Circuit Board) splicing and blanking method based on deep intelligent genetic optimization algorithm</title><source>esp@cenet</source><creator>DING XINGRU ; LIU KAI</creator><creatorcontrib>DING XINGRU ; LIU KAI</creatorcontrib><description>The embodiment of the invention provides a PCB (Printed Circuit Board) splicing and blanking method based on a deep intelligent genetic optimization algorithm. The method comprises the following steps: step 1, generating an initial population; 2, calculating the fitness of the initial population, and obtaining the state of the initial population; step 3, when the fitness value does not reach a preset value, inputting the current state st of the population into a deep intelligent genetic optimization algorithm for optimization; and 4, repeating the step 3 until the maximum specified operation round number is reached, and outputting the layout drawing and the utilization rate of the optimal individual. According to the method, a deep reinforcement learning model SAC is used for optimizing the genetic algorithm, crossover and mutation operations are separated from a traditional genetic algorithm and serve as action spaces of agents, the agents are trained through the SAC model, the crossover and mutation operati</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220301&amp;DB=EPODOC&amp;CC=CN&amp;NR=114118000A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76516</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220301&amp;DB=EPODOC&amp;CC=CN&amp;NR=114118000A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>DING XINGRU</creatorcontrib><creatorcontrib>LIU KAI</creatorcontrib><title>PCB (Printed Circuit Board) splicing and blanking method based on deep intelligent genetic optimization algorithm</title><description>The embodiment of the invention provides a PCB (Printed Circuit Board) splicing and blanking method based on a deep intelligent genetic optimization algorithm. The method comprises the following steps: step 1, generating an initial population; 2, calculating the fitness of the initial population, and obtaining the state of the initial population; step 3, when the fitness value does not reach a preset value, inputting the current state st of the population into a deep intelligent genetic optimization algorithm for optimization; and 4, repeating the step 3 until the maximum specified operation round number is reached, and outputting the layout drawing and the utilization rate of the optimal individual. According to the method, a deep reinforcement learning model SAC is used for optimizing the genetic algorithm, crossover and mutation operations are separated from a traditional genetic algorithm and serve as action spaces of agents, the agents are trained through the SAC model, the crossover and mutation operati</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNizEKAjEQRbexEPUOY6eFsEELWzcoVrKFvYzJuDuYTWIyNp7eLHgAm_958N60erW6gVWb2AtZ0JzMmwWagMmuIUfHhn0H6C3cHfrnCANJHwpjLkXwYIkijL1z3JEXKEPCBkIUHviDwsVC14XE0g_zavJAl2nx-1m1PB2v-ryhGG6UI5oxv-mLUjul9nVdH7b_OF_o0ELo</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>DING XINGRU</creator><creator>LIU KAI</creator><scope>EVB</scope></search><sort><creationdate>20220301</creationdate><title>PCB (Printed Circuit Board) splicing and blanking method based on deep intelligent genetic optimization algorithm</title><author>DING XINGRU ; LIU KAI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN114118000A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>DING XINGRU</creatorcontrib><creatorcontrib>LIU KAI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>DING XINGRU</au><au>LIU KAI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>PCB (Printed Circuit Board) splicing and blanking method based on deep intelligent genetic optimization algorithm</title><date>2022-03-01</date><risdate>2022</risdate><abstract>The embodiment of the invention provides a PCB (Printed Circuit Board) splicing and blanking method based on a deep intelligent genetic optimization algorithm. The method comprises the following steps: step 1, generating an initial population; 2, calculating the fitness of the initial population, and obtaining the state of the initial population; step 3, when the fitness value does not reach a preset value, inputting the current state st of the population into a deep intelligent genetic optimization algorithm for optimization; and 4, repeating the step 3 until the maximum specified operation round number is reached, and outputting the layout drawing and the utilization rate of the optimal individual. According to the method, a deep reinforcement learning model SAC is used for optimizing the genetic algorithm, crossover and mutation operations are separated from a traditional genetic algorithm and serve as action spaces of agents, the agents are trained through the SAC model, the crossover and mutation operati</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN114118000A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title PCB (Printed Circuit Board) splicing and blanking method based on deep intelligent genetic optimization algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A29%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=DING%20XINGRU&rft.date=2022-03-01&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN114118000A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true