Internet of Things anomaly detection system based on joint learning and automatic encoder

The invention discloses an Internet of Things anomaly detection system based on joint learning and an automatic encoder, which relates to the field of Internet of Things security and comprises a data collection module, a data processing and selection module, a sub-detection module, a joint learning...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: WU YUE, ZHANG XUANKAI, ZOU FUTAI, ZHOU ZHIMO
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator WU YUE
ZHANG XUANKAI
ZOU FUTAI
ZHOU ZHIMO
description The invention discloses an Internet of Things anomaly detection system based on joint learning and an automatic encoder, which relates to the field of Internet of Things security and comprises a data collection module, a data processing and selection module, a sub-detection module, a joint learning module and an anomaly detection module. The data collection module obtains the transmit-receive traffic of all Internet of Things devices in a local area network segment, and stores the transmit-receive traffic as pcap data. The data processing and selecting module receives the pcap data, selects 15 characteristics as data representatives, and stores the data representatives as JSON files; the sub-detection module uses a machine learning technology to obtain low-dimensional features represented by the data and is responsible for uploading a learning model; the joint learning module receives the learning model, stores the learning model after integration, and returns the learning model to each sub-detection module;
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN114117935A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN114117935A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN114117935A3</originalsourceid><addsrcrecordid>eNqNzTEOwjAQBMA0FAj4w_EACisgRIkiEDRUaaiiw96AkXOO7KPI73HBA6hWK-1o59X9KookUIo9tS8vz0wsceAwkYPCqo9CecqKgR6c4aj0d_SiFMBJiijAEX-0KPWWIDY6pGU16zlkrH65qNbnU9tcNhhjhzyyRbntmpsxW2P2h3p3rP_ZfAHwzzrK</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Internet of Things anomaly detection system based on joint learning and automatic encoder</title><source>esp@cenet</source><creator>WU YUE ; ZHANG XUANKAI ; ZOU FUTAI ; ZHOU ZHIMO</creator><creatorcontrib>WU YUE ; ZHANG XUANKAI ; ZOU FUTAI ; ZHOU ZHIMO</creatorcontrib><description>The invention discloses an Internet of Things anomaly detection system based on joint learning and an automatic encoder, which relates to the field of Internet of Things security and comprises a data collection module, a data processing and selection module, a sub-detection module, a joint learning module and an anomaly detection module. The data collection module obtains the transmit-receive traffic of all Internet of Things devices in a local area network segment, and stores the transmit-receive traffic as pcap data. The data processing and selecting module receives the pcap data, selects 15 characteristics as data representatives, and stores the data representatives as JSON files; the sub-detection module uses a machine learning technology to obtain low-dimensional features represented by the data and is responsible for uploading a learning model; the joint learning module receives the learning model, stores the learning model after integration, and returns the learning model to each sub-detection module;</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220301&amp;DB=EPODOC&amp;CC=CN&amp;NR=114117935A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220301&amp;DB=EPODOC&amp;CC=CN&amp;NR=114117935A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WU YUE</creatorcontrib><creatorcontrib>ZHANG XUANKAI</creatorcontrib><creatorcontrib>ZOU FUTAI</creatorcontrib><creatorcontrib>ZHOU ZHIMO</creatorcontrib><title>Internet of Things anomaly detection system based on joint learning and automatic encoder</title><description>The invention discloses an Internet of Things anomaly detection system based on joint learning and an automatic encoder, which relates to the field of Internet of Things security and comprises a data collection module, a data processing and selection module, a sub-detection module, a joint learning module and an anomaly detection module. The data collection module obtains the transmit-receive traffic of all Internet of Things devices in a local area network segment, and stores the transmit-receive traffic as pcap data. The data processing and selecting module receives the pcap data, selects 15 characteristics as data representatives, and stores the data representatives as JSON files; the sub-detection module uses a machine learning technology to obtain low-dimensional features represented by the data and is responsible for uploading a learning model; the joint learning module receives the learning model, stores the learning model after integration, and returns the learning model to each sub-detection module;</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNzTEOwjAQBMA0FAj4w_EACisgRIkiEDRUaaiiw96AkXOO7KPI73HBA6hWK-1o59X9KookUIo9tS8vz0wsceAwkYPCqo9CecqKgR6c4aj0d_SiFMBJiijAEX-0KPWWIDY6pGU16zlkrH65qNbnU9tcNhhjhzyyRbntmpsxW2P2h3p3rP_ZfAHwzzrK</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>WU YUE</creator><creator>ZHANG XUANKAI</creator><creator>ZOU FUTAI</creator><creator>ZHOU ZHIMO</creator><scope>EVB</scope></search><sort><creationdate>20220301</creationdate><title>Internet of Things anomaly detection system based on joint learning and automatic encoder</title><author>WU YUE ; ZHANG XUANKAI ; ZOU FUTAI ; ZHOU ZHIMO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN114117935A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>WU YUE</creatorcontrib><creatorcontrib>ZHANG XUANKAI</creatorcontrib><creatorcontrib>ZOU FUTAI</creatorcontrib><creatorcontrib>ZHOU ZHIMO</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WU YUE</au><au>ZHANG XUANKAI</au><au>ZOU FUTAI</au><au>ZHOU ZHIMO</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Internet of Things anomaly detection system based on joint learning and automatic encoder</title><date>2022-03-01</date><risdate>2022</risdate><abstract>The invention discloses an Internet of Things anomaly detection system based on joint learning and an automatic encoder, which relates to the field of Internet of Things security and comprises a data collection module, a data processing and selection module, a sub-detection module, a joint learning module and an anomaly detection module. The data collection module obtains the transmit-receive traffic of all Internet of Things devices in a local area network segment, and stores the transmit-receive traffic as pcap data. The data processing and selecting module receives the pcap data, selects 15 characteristics as data representatives, and stores the data representatives as JSON files; the sub-detection module uses a machine learning technology to obtain low-dimensional features represented by the data and is responsible for uploading a learning model; the joint learning module receives the learning model, stores the learning model after integration, and returns the learning model to each sub-detection module;</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN114117935A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS
PHYSICS
title Internet of Things anomaly detection system based on joint learning and automatic encoder
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T08%3A02%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WU%20YUE&rft.date=2022-03-01&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN114117935A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true