Croho disease and intestinal tuberculosis classification method based on multi-sequence MRI images

The invention discloses a Croho disease and intestinal tuberculosis classification method based on multi-sequence MRI images, and the method comprises the steps: obtaining a plurality of abdominal cavity MRI images carrying intestinal tissue regions of a same target object, inputting the plurality o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LU BAOLAN, ZHANG NAIWEN, LIN HAIWEI, FANG ZHUANGNIAN, FENG SHITING, HUANG BINGSHENG, ZENG YINGHOU, LI XUEHUA, LIU JIAWEI, ZHANG MENGCHEN, MENG JIXIN, YUAN CHENGLANG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LU BAOLAN
ZHANG NAIWEN
LIN HAIWEI
FANG ZHUANGNIAN
FENG SHITING
HUANG BINGSHENG
ZENG YINGHOU
LI XUEHUA
LIU JIAWEI
ZHANG MENGCHEN
MENG JIXIN
YUAN CHENGLANG
description The invention discloses a Croho disease and intestinal tuberculosis classification method based on multi-sequence MRI images, and the method comprises the steps: obtaining a plurality of abdominal cavity MRI images carrying intestinal tissue regions of a same target object, inputting the plurality of abdominal cavity MRI images into a trained classification network model, and determining that the focus type of the target object is a Crow disease type or an intestinal tuberculosis type through the classification network model. According to the invention, the trained classification network model is used to learn the abdominal cavity MRI image carrying the omnibearing features of the intestinal tract lesion, and a large amount of lesion feature information of the Crow's disease CD and the intestinal tuberculosis ITB can be excavated, so that the lesion category of the target object can be accurately determined as the Crow's disease category or the intestinal tuberculosis category. Further, the accuracy of identi
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN114092427A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN114092427A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN114092427A3</originalsourceid><addsrcrecordid>eNqNi7EKwkAQBdNYiPoP6wcETAyIpQRFCy3EPmzuXszC5S5m7_5fBT_AahiYmWdtPYU-kBUFK4i9JfERGsWzo5haTCa5oKJkHKtKJ4ajBE8DYh8stZ_N0teTi5IrXgnegK73C8nAT-gym3XsFKsfF9n6dHzU5xxjaKAjG3jEpr4VRbXZl1W5O2z_ad6GHz5I</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Croho disease and intestinal tuberculosis classification method based on multi-sequence MRI images</title><source>esp@cenet</source><creator>LU BAOLAN ; ZHANG NAIWEN ; LIN HAIWEI ; FANG ZHUANGNIAN ; FENG SHITING ; HUANG BINGSHENG ; ZENG YINGHOU ; LI XUEHUA ; LIU JIAWEI ; ZHANG MENGCHEN ; MENG JIXIN ; YUAN CHENGLANG</creator><creatorcontrib>LU BAOLAN ; ZHANG NAIWEN ; LIN HAIWEI ; FANG ZHUANGNIAN ; FENG SHITING ; HUANG BINGSHENG ; ZENG YINGHOU ; LI XUEHUA ; LIU JIAWEI ; ZHANG MENGCHEN ; MENG JIXIN ; YUAN CHENGLANG</creatorcontrib><description>The invention discloses a Croho disease and intestinal tuberculosis classification method based on multi-sequence MRI images, and the method comprises the steps: obtaining a plurality of abdominal cavity MRI images carrying intestinal tissue regions of a same target object, inputting the plurality of abdominal cavity MRI images into a trained classification network model, and determining that the focus type of the target object is a Crow disease type or an intestinal tuberculosis type through the classification network model. According to the invention, the trained classification network model is used to learn the abdominal cavity MRI image carrying the omnibearing features of the intestinal tract lesion, and a large amount of lesion feature information of the Crow's disease CD and the intestinal tuberculosis ITB can be excavated, so that the lesion category of the target object can be accurately determined as the Crow's disease category or the intestinal tuberculosis category. Further, the accuracy of identi</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220225&amp;DB=EPODOC&amp;CC=CN&amp;NR=114092427A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220225&amp;DB=EPODOC&amp;CC=CN&amp;NR=114092427A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LU BAOLAN</creatorcontrib><creatorcontrib>ZHANG NAIWEN</creatorcontrib><creatorcontrib>LIN HAIWEI</creatorcontrib><creatorcontrib>FANG ZHUANGNIAN</creatorcontrib><creatorcontrib>FENG SHITING</creatorcontrib><creatorcontrib>HUANG BINGSHENG</creatorcontrib><creatorcontrib>ZENG YINGHOU</creatorcontrib><creatorcontrib>LI XUEHUA</creatorcontrib><creatorcontrib>LIU JIAWEI</creatorcontrib><creatorcontrib>ZHANG MENGCHEN</creatorcontrib><creatorcontrib>MENG JIXIN</creatorcontrib><creatorcontrib>YUAN CHENGLANG</creatorcontrib><title>Croho disease and intestinal tuberculosis classification method based on multi-sequence MRI images</title><description>The invention discloses a Croho disease and intestinal tuberculosis classification method based on multi-sequence MRI images, and the method comprises the steps: obtaining a plurality of abdominal cavity MRI images carrying intestinal tissue regions of a same target object, inputting the plurality of abdominal cavity MRI images into a trained classification network model, and determining that the focus type of the target object is a Crow disease type or an intestinal tuberculosis type through the classification network model. According to the invention, the trained classification network model is used to learn the abdominal cavity MRI image carrying the omnibearing features of the intestinal tract lesion, and a large amount of lesion feature information of the Crow's disease CD and the intestinal tuberculosis ITB can be excavated, so that the lesion category of the target object can be accurately determined as the Crow's disease category or the intestinal tuberculosis category. Further, the accuracy of identi</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNi7EKwkAQBdNYiPoP6wcETAyIpQRFCy3EPmzuXszC5S5m7_5fBT_AahiYmWdtPYU-kBUFK4i9JfERGsWzo5haTCa5oKJkHKtKJ4ajBE8DYh8stZ_N0teTi5IrXgnegK73C8nAT-gym3XsFKsfF9n6dHzU5xxjaKAjG3jEpr4VRbXZl1W5O2z_ad6GHz5I</recordid><startdate>20220225</startdate><enddate>20220225</enddate><creator>LU BAOLAN</creator><creator>ZHANG NAIWEN</creator><creator>LIN HAIWEI</creator><creator>FANG ZHUANGNIAN</creator><creator>FENG SHITING</creator><creator>HUANG BINGSHENG</creator><creator>ZENG YINGHOU</creator><creator>LI XUEHUA</creator><creator>LIU JIAWEI</creator><creator>ZHANG MENGCHEN</creator><creator>MENG JIXIN</creator><creator>YUAN CHENGLANG</creator><scope>EVB</scope></search><sort><creationdate>20220225</creationdate><title>Croho disease and intestinal tuberculosis classification method based on multi-sequence MRI images</title><author>LU BAOLAN ; ZHANG NAIWEN ; LIN HAIWEI ; FANG ZHUANGNIAN ; FENG SHITING ; HUANG BINGSHENG ; ZENG YINGHOU ; LI XUEHUA ; LIU JIAWEI ; ZHANG MENGCHEN ; MENG JIXIN ; YUAN CHENGLANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN114092427A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>LU BAOLAN</creatorcontrib><creatorcontrib>ZHANG NAIWEN</creatorcontrib><creatorcontrib>LIN HAIWEI</creatorcontrib><creatorcontrib>FANG ZHUANGNIAN</creatorcontrib><creatorcontrib>FENG SHITING</creatorcontrib><creatorcontrib>HUANG BINGSHENG</creatorcontrib><creatorcontrib>ZENG YINGHOU</creatorcontrib><creatorcontrib>LI XUEHUA</creatorcontrib><creatorcontrib>LIU JIAWEI</creatorcontrib><creatorcontrib>ZHANG MENGCHEN</creatorcontrib><creatorcontrib>MENG JIXIN</creatorcontrib><creatorcontrib>YUAN CHENGLANG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LU BAOLAN</au><au>ZHANG NAIWEN</au><au>LIN HAIWEI</au><au>FANG ZHUANGNIAN</au><au>FENG SHITING</au><au>HUANG BINGSHENG</au><au>ZENG YINGHOU</au><au>LI XUEHUA</au><au>LIU JIAWEI</au><au>ZHANG MENGCHEN</au><au>MENG JIXIN</au><au>YUAN CHENGLANG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Croho disease and intestinal tuberculosis classification method based on multi-sequence MRI images</title><date>2022-02-25</date><risdate>2022</risdate><abstract>The invention discloses a Croho disease and intestinal tuberculosis classification method based on multi-sequence MRI images, and the method comprises the steps: obtaining a plurality of abdominal cavity MRI images carrying intestinal tissue regions of a same target object, inputting the plurality of abdominal cavity MRI images into a trained classification network model, and determining that the focus type of the target object is a Crow disease type or an intestinal tuberculosis type through the classification network model. According to the invention, the trained classification network model is used to learn the abdominal cavity MRI image carrying the omnibearing features of the intestinal tract lesion, and a large amount of lesion feature information of the Crow's disease CD and the intestinal tuberculosis ITB can be excavated, so that the lesion category of the target object can be accurately determined as the Crow's disease category or the intestinal tuberculosis category. Further, the accuracy of identi</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN114092427A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
HANDLING RECORD CARRIERS
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title Croho disease and intestinal tuberculosis classification method based on multi-sequence MRI images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T04%3A42%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LU%20BAOLAN&rft.date=2022-02-25&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN114092427A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true