Water-air amphibious unmanned vehicle path planning method based on reinforcement learning
The invention discloses a water-air amphibious unmanned vehicle path planning method based on reinforcement learning. The method comprises the following steps: S1, selecting an area S where an amphibious unmanned vehicle executes a path planning task, and extracting data of the corresponding area S...
Gespeichert in:
Hauptverfasser: | , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | DU ZHAOPING YANG XIAOFEI SHE HONGWEI YAN XIN FENG BEIZHEN LIU WEI SHI YILUN YE HUI |
description | The invention discloses a water-air amphibious unmanned vehicle path planning method based on reinforcement learning. The method comprises the following steps: S1, selecting an area S where an amphibious unmanned vehicle executes a path planning task, and extracting data of the corresponding area S in an electronic chart according to the area S to perform three-dimensional environment modeling; s2, constructing a Markov decision process (MDP) for path planning of the amphibious unmanned vehicle; and S3, giving a starting point and a target point, and completing global path planning according to different working scenes of the amphibious unmanned vehicle based on a depth Q network (DQN) algorithm according to the MDP of path planning of the amphibious unmanned vehicle. Compared with an existing environment modeling method for path planning of the amphibious unmanned vehicle, the planning range is widened to dozens of kilometers, the motion characteristics of the amphibious unmanned vehicle are effectively cons |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN114089762A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN114089762A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN114089762A3</originalsourceid><addsrcrecordid>eNqNyksKwjAURuFMHIi6h-sCClbFx1CK4siRIDgpt-1fE0huQpK6fiu4AEcHDt9UPR-cEQs2kdgFbRrjh0SDOBZBR29o01pQ4Kwp2HEaeZFD1r6jhtNIvFCEkd7HFg6SyYLjl83VpGebsPh1ppaX8726Fgi-RgrcQpDr6laW29XhuN-tT5t_zAdZYDuC</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Water-air amphibious unmanned vehicle path planning method based on reinforcement learning</title><source>esp@cenet</source><creator>DU ZHAOPING ; YANG XIAOFEI ; SHE HONGWEI ; YAN XIN ; FENG BEIZHEN ; LIU WEI ; SHI YILUN ; YE HUI</creator><creatorcontrib>DU ZHAOPING ; YANG XIAOFEI ; SHE HONGWEI ; YAN XIN ; FENG BEIZHEN ; LIU WEI ; SHI YILUN ; YE HUI</creatorcontrib><description>The invention discloses a water-air amphibious unmanned vehicle path planning method based on reinforcement learning. The method comprises the following steps: S1, selecting an area S where an amphibious unmanned vehicle executes a path planning task, and extracting data of the corresponding area S in an electronic chart according to the area S to perform three-dimensional environment modeling; s2, constructing a Markov decision process (MDP) for path planning of the amphibious unmanned vehicle; and S3, giving a starting point and a target point, and completing global path planning according to different working scenes of the amphibious unmanned vehicle based on a depth Q network (DQN) algorithm according to the MDP of path planning of the amphibious unmanned vehicle. Compared with an existing environment modeling method for path planning of the amphibious unmanned vehicle, the planning range is widened to dozens of kilometers, the motion characteristics of the amphibious unmanned vehicle are effectively cons</description><language>chi ; eng</language><subject>CONTROLLING ; PHYSICS ; REGULATING ; SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220225&DB=EPODOC&CC=CN&NR=114089762A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220225&DB=EPODOC&CC=CN&NR=114089762A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>DU ZHAOPING</creatorcontrib><creatorcontrib>YANG XIAOFEI</creatorcontrib><creatorcontrib>SHE HONGWEI</creatorcontrib><creatorcontrib>YAN XIN</creatorcontrib><creatorcontrib>FENG BEIZHEN</creatorcontrib><creatorcontrib>LIU WEI</creatorcontrib><creatorcontrib>SHI YILUN</creatorcontrib><creatorcontrib>YE HUI</creatorcontrib><title>Water-air amphibious unmanned vehicle path planning method based on reinforcement learning</title><description>The invention discloses a water-air amphibious unmanned vehicle path planning method based on reinforcement learning. The method comprises the following steps: S1, selecting an area S where an amphibious unmanned vehicle executes a path planning task, and extracting data of the corresponding area S in an electronic chart according to the area S to perform three-dimensional environment modeling; s2, constructing a Markov decision process (MDP) for path planning of the amphibious unmanned vehicle; and S3, giving a starting point and a target point, and completing global path planning according to different working scenes of the amphibious unmanned vehicle based on a depth Q network (DQN) algorithm according to the MDP of path planning of the amphibious unmanned vehicle. Compared with an existing environment modeling method for path planning of the amphibious unmanned vehicle, the planning range is widened to dozens of kilometers, the motion characteristics of the amphibious unmanned vehicle are effectively cons</description><subject>CONTROLLING</subject><subject>PHYSICS</subject><subject>REGULATING</subject><subject>SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyksKwjAURuFMHIi6h-sCClbFx1CK4siRIDgpt-1fE0huQpK6fiu4AEcHDt9UPR-cEQs2kdgFbRrjh0SDOBZBR29o01pQ4Kwp2HEaeZFD1r6jhtNIvFCEkd7HFg6SyYLjl83VpGebsPh1ppaX8726Fgi-RgrcQpDr6laW29XhuN-tT5t_zAdZYDuC</recordid><startdate>20220225</startdate><enddate>20220225</enddate><creator>DU ZHAOPING</creator><creator>YANG XIAOFEI</creator><creator>SHE HONGWEI</creator><creator>YAN XIN</creator><creator>FENG BEIZHEN</creator><creator>LIU WEI</creator><creator>SHI YILUN</creator><creator>YE HUI</creator><scope>EVB</scope></search><sort><creationdate>20220225</creationdate><title>Water-air amphibious unmanned vehicle path planning method based on reinforcement learning</title><author>DU ZHAOPING ; YANG XIAOFEI ; SHE HONGWEI ; YAN XIN ; FENG BEIZHEN ; LIU WEI ; SHI YILUN ; YE HUI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN114089762A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CONTROLLING</topic><topic>PHYSICS</topic><topic>REGULATING</topic><topic>SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES</topic><toplevel>online_resources</toplevel><creatorcontrib>DU ZHAOPING</creatorcontrib><creatorcontrib>YANG XIAOFEI</creatorcontrib><creatorcontrib>SHE HONGWEI</creatorcontrib><creatorcontrib>YAN XIN</creatorcontrib><creatorcontrib>FENG BEIZHEN</creatorcontrib><creatorcontrib>LIU WEI</creatorcontrib><creatorcontrib>SHI YILUN</creatorcontrib><creatorcontrib>YE HUI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>DU ZHAOPING</au><au>YANG XIAOFEI</au><au>SHE HONGWEI</au><au>YAN XIN</au><au>FENG BEIZHEN</au><au>LIU WEI</au><au>SHI YILUN</au><au>YE HUI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Water-air amphibious unmanned vehicle path planning method based on reinforcement learning</title><date>2022-02-25</date><risdate>2022</risdate><abstract>The invention discloses a water-air amphibious unmanned vehicle path planning method based on reinforcement learning. The method comprises the following steps: S1, selecting an area S where an amphibious unmanned vehicle executes a path planning task, and extracting data of the corresponding area S in an electronic chart according to the area S to perform three-dimensional environment modeling; s2, constructing a Markov decision process (MDP) for path planning of the amphibious unmanned vehicle; and S3, giving a starting point and a target point, and completing global path planning according to different working scenes of the amphibious unmanned vehicle based on a depth Q network (DQN) algorithm according to the MDP of path planning of the amphibious unmanned vehicle. Compared with an existing environment modeling method for path planning of the amphibious unmanned vehicle, the planning range is widened to dozens of kilometers, the motion characteristics of the amphibious unmanned vehicle are effectively cons</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN114089762A |
source | esp@cenet |
subjects | CONTROLLING PHYSICS REGULATING SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES |
title | Water-air amphibious unmanned vehicle path planning method based on reinforcement learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T19%3A32%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=DU%20ZHAOPING&rft.date=2022-02-25&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN114089762A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |