Water-air amphibious unmanned vehicle path planning method based on reinforcement learning

The invention discloses a water-air amphibious unmanned vehicle path planning method based on reinforcement learning. The method comprises the following steps: S1, selecting an area S where an amphibious unmanned vehicle executes a path planning task, and extracting data of the corresponding area S...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: DU ZHAOPING, YANG XIAOFEI, SHE HONGWEI, YAN XIN, FENG BEIZHEN, LIU WEI, SHI YILUN, YE HUI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator DU ZHAOPING
YANG XIAOFEI
SHE HONGWEI
YAN XIN
FENG BEIZHEN
LIU WEI
SHI YILUN
YE HUI
description The invention discloses a water-air amphibious unmanned vehicle path planning method based on reinforcement learning. The method comprises the following steps: S1, selecting an area S where an amphibious unmanned vehicle executes a path planning task, and extracting data of the corresponding area S in an electronic chart according to the area S to perform three-dimensional environment modeling; s2, constructing a Markov decision process (MDP) for path planning of the amphibious unmanned vehicle; and S3, giving a starting point and a target point, and completing global path planning according to different working scenes of the amphibious unmanned vehicle based on a depth Q network (DQN) algorithm according to the MDP of path planning of the amphibious unmanned vehicle. Compared with an existing environment modeling method for path planning of the amphibious unmanned vehicle, the planning range is widened to dozens of kilometers, the motion characteristics of the amphibious unmanned vehicle are effectively cons
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN114089762A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN114089762A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN114089762A3</originalsourceid><addsrcrecordid>eNqNyksKwjAURuFMHIi6h-sCClbFx1CK4siRIDgpt-1fE0huQpK6fiu4AEcHDt9UPR-cEQs2kdgFbRrjh0SDOBZBR29o01pQ4Kwp2HEaeZFD1r6jhtNIvFCEkd7HFg6SyYLjl83VpGebsPh1ppaX8726Fgi-RgrcQpDr6laW29XhuN-tT5t_zAdZYDuC</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Water-air amphibious unmanned vehicle path planning method based on reinforcement learning</title><source>esp@cenet</source><creator>DU ZHAOPING ; YANG XIAOFEI ; SHE HONGWEI ; YAN XIN ; FENG BEIZHEN ; LIU WEI ; SHI YILUN ; YE HUI</creator><creatorcontrib>DU ZHAOPING ; YANG XIAOFEI ; SHE HONGWEI ; YAN XIN ; FENG BEIZHEN ; LIU WEI ; SHI YILUN ; YE HUI</creatorcontrib><description>The invention discloses a water-air amphibious unmanned vehicle path planning method based on reinforcement learning. The method comprises the following steps: S1, selecting an area S where an amphibious unmanned vehicle executes a path planning task, and extracting data of the corresponding area S in an electronic chart according to the area S to perform three-dimensional environment modeling; s2, constructing a Markov decision process (MDP) for path planning of the amphibious unmanned vehicle; and S3, giving a starting point and a target point, and completing global path planning according to different working scenes of the amphibious unmanned vehicle based on a depth Q network (DQN) algorithm according to the MDP of path planning of the amphibious unmanned vehicle. Compared with an existing environment modeling method for path planning of the amphibious unmanned vehicle, the planning range is widened to dozens of kilometers, the motion characteristics of the amphibious unmanned vehicle are effectively cons</description><language>chi ; eng</language><subject>CONTROLLING ; PHYSICS ; REGULATING ; SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220225&amp;DB=EPODOC&amp;CC=CN&amp;NR=114089762A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220225&amp;DB=EPODOC&amp;CC=CN&amp;NR=114089762A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>DU ZHAOPING</creatorcontrib><creatorcontrib>YANG XIAOFEI</creatorcontrib><creatorcontrib>SHE HONGWEI</creatorcontrib><creatorcontrib>YAN XIN</creatorcontrib><creatorcontrib>FENG BEIZHEN</creatorcontrib><creatorcontrib>LIU WEI</creatorcontrib><creatorcontrib>SHI YILUN</creatorcontrib><creatorcontrib>YE HUI</creatorcontrib><title>Water-air amphibious unmanned vehicle path planning method based on reinforcement learning</title><description>The invention discloses a water-air amphibious unmanned vehicle path planning method based on reinforcement learning. The method comprises the following steps: S1, selecting an area S where an amphibious unmanned vehicle executes a path planning task, and extracting data of the corresponding area S in an electronic chart according to the area S to perform three-dimensional environment modeling; s2, constructing a Markov decision process (MDP) for path planning of the amphibious unmanned vehicle; and S3, giving a starting point and a target point, and completing global path planning according to different working scenes of the amphibious unmanned vehicle based on a depth Q network (DQN) algorithm according to the MDP of path planning of the amphibious unmanned vehicle. Compared with an existing environment modeling method for path planning of the amphibious unmanned vehicle, the planning range is widened to dozens of kilometers, the motion characteristics of the amphibious unmanned vehicle are effectively cons</description><subject>CONTROLLING</subject><subject>PHYSICS</subject><subject>REGULATING</subject><subject>SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyksKwjAURuFMHIi6h-sCClbFx1CK4siRIDgpt-1fE0huQpK6fiu4AEcHDt9UPR-cEQs2kdgFbRrjh0SDOBZBR29o01pQ4Kwp2HEaeZFD1r6jhtNIvFCEkd7HFg6SyYLjl83VpGebsPh1ppaX8726Fgi-RgrcQpDr6laW29XhuN-tT5t_zAdZYDuC</recordid><startdate>20220225</startdate><enddate>20220225</enddate><creator>DU ZHAOPING</creator><creator>YANG XIAOFEI</creator><creator>SHE HONGWEI</creator><creator>YAN XIN</creator><creator>FENG BEIZHEN</creator><creator>LIU WEI</creator><creator>SHI YILUN</creator><creator>YE HUI</creator><scope>EVB</scope></search><sort><creationdate>20220225</creationdate><title>Water-air amphibious unmanned vehicle path planning method based on reinforcement learning</title><author>DU ZHAOPING ; YANG XIAOFEI ; SHE HONGWEI ; YAN XIN ; FENG BEIZHEN ; LIU WEI ; SHI YILUN ; YE HUI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN114089762A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CONTROLLING</topic><topic>PHYSICS</topic><topic>REGULATING</topic><topic>SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES</topic><toplevel>online_resources</toplevel><creatorcontrib>DU ZHAOPING</creatorcontrib><creatorcontrib>YANG XIAOFEI</creatorcontrib><creatorcontrib>SHE HONGWEI</creatorcontrib><creatorcontrib>YAN XIN</creatorcontrib><creatorcontrib>FENG BEIZHEN</creatorcontrib><creatorcontrib>LIU WEI</creatorcontrib><creatorcontrib>SHI YILUN</creatorcontrib><creatorcontrib>YE HUI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>DU ZHAOPING</au><au>YANG XIAOFEI</au><au>SHE HONGWEI</au><au>YAN XIN</au><au>FENG BEIZHEN</au><au>LIU WEI</au><au>SHI YILUN</au><au>YE HUI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Water-air amphibious unmanned vehicle path planning method based on reinforcement learning</title><date>2022-02-25</date><risdate>2022</risdate><abstract>The invention discloses a water-air amphibious unmanned vehicle path planning method based on reinforcement learning. The method comprises the following steps: S1, selecting an area S where an amphibious unmanned vehicle executes a path planning task, and extracting data of the corresponding area S in an electronic chart according to the area S to perform three-dimensional environment modeling; s2, constructing a Markov decision process (MDP) for path planning of the amphibious unmanned vehicle; and S3, giving a starting point and a target point, and completing global path planning according to different working scenes of the amphibious unmanned vehicle based on a depth Q network (DQN) algorithm according to the MDP of path planning of the amphibious unmanned vehicle. Compared with an existing environment modeling method for path planning of the amphibious unmanned vehicle, the planning range is widened to dozens of kilometers, the motion characteristics of the amphibious unmanned vehicle are effectively cons</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN114089762A
source esp@cenet
subjects CONTROLLING
PHYSICS
REGULATING
SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
title Water-air amphibious unmanned vehicle path planning method based on reinforcement learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T19%3A32%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=DU%20ZHAOPING&rft.date=2022-02-25&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN114089762A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true