Image saliency detection method of double-current decoder based on information complementation

The invention discloses an image saliency detection method of a double-flow decoder based on information complementation. The method comprises the following steps: S1, decomposing a label image to obtain a corresponding main body label image and a contour detail label image; S2, carrying out random...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LIN YIWEI, LOU KECHEN, XU JINSHAN, WANG MENGTING, CHEN ZHENQIN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LIN YIWEI
LOU KECHEN
XU JINSHAN
WANG MENGTING
CHEN ZHENQIN
description The invention discloses an image saliency detection method of a double-flow decoder based on information complementation. The method comprises the following steps: S1, decomposing a label image to obtain a corresponding main body label image and a contour detail label image; S2, carrying out random cutting, random rotation, normalization and graying processing on the training data set image to enhance the diversity of a sample; S3, inputting an image, pre-processing the image by using a VGG16 framework, and respectively collecting image features of different sizes by using a group of coding blocks of different dimensions; S4, inputting the five-layer output feature map obtained by the encoder into an Embedding layer, and performing dimension unification; S5, respectively transmitting the encoded features of the target main body graph and the encoded features of the contour detail graph into a significance branch and a contour graph branch, and are respectively supervising the branches by using the obtained ma
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN114067101A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN114067101A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN114067101A3</originalsourceid><addsrcrecordid>eNqNy7EKwjAYBOAsDqK-w-8DFBoUnaUoujg5W9LkqoEkf0jSwbc3FB_A6Tjuu6V43rx6gbJyFkF_yKBAF8uBPMqbDfFIhqfBodFTSgilEs0GiQaVUfdANoycvJpfmn108NXNfS0Wo3IZm1-uxPZyfnTXBpF75Kg0Akrf3aXct4ejbOVp94_5AnAuPRE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Image saliency detection method of double-current decoder based on information complementation</title><source>esp@cenet</source><creator>LIN YIWEI ; LOU KECHEN ; XU JINSHAN ; WANG MENGTING ; CHEN ZHENQIN</creator><creatorcontrib>LIN YIWEI ; LOU KECHEN ; XU JINSHAN ; WANG MENGTING ; CHEN ZHENQIN</creatorcontrib><description>The invention discloses an image saliency detection method of a double-flow decoder based on information complementation. The method comprises the following steps: S1, decomposing a label image to obtain a corresponding main body label image and a contour detail label image; S2, carrying out random cutting, random rotation, normalization and graying processing on the training data set image to enhance the diversity of a sample; S3, inputting an image, pre-processing the image by using a VGG16 framework, and respectively collecting image features of different sizes by using a group of coding blocks of different dimensions; S4, inputting the five-layer output feature map obtained by the encoder into an Embedding layer, and performing dimension unification; S5, respectively transmitting the encoded features of the target main body graph and the encoded features of the contour detail graph into a significance branch and a contour graph branch, and are respectively supervising the branches by using the obtained ma</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220218&amp;DB=EPODOC&amp;CC=CN&amp;NR=114067101A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220218&amp;DB=EPODOC&amp;CC=CN&amp;NR=114067101A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LIN YIWEI</creatorcontrib><creatorcontrib>LOU KECHEN</creatorcontrib><creatorcontrib>XU JINSHAN</creatorcontrib><creatorcontrib>WANG MENGTING</creatorcontrib><creatorcontrib>CHEN ZHENQIN</creatorcontrib><title>Image saliency detection method of double-current decoder based on information complementation</title><description>The invention discloses an image saliency detection method of a double-flow decoder based on information complementation. The method comprises the following steps: S1, decomposing a label image to obtain a corresponding main body label image and a contour detail label image; S2, carrying out random cutting, random rotation, normalization and graying processing on the training data set image to enhance the diversity of a sample; S3, inputting an image, pre-processing the image by using a VGG16 framework, and respectively collecting image features of different sizes by using a group of coding blocks of different dimensions; S4, inputting the five-layer output feature map obtained by the encoder into an Embedding layer, and performing dimension unification; S5, respectively transmitting the encoded features of the target main body graph and the encoded features of the contour detail graph into a significance branch and a contour graph branch, and are respectively supervising the branches by using the obtained ma</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNy7EKwjAYBOAsDqK-w-8DFBoUnaUoujg5W9LkqoEkf0jSwbc3FB_A6Tjuu6V43rx6gbJyFkF_yKBAF8uBPMqbDfFIhqfBodFTSgilEs0GiQaVUfdANoycvJpfmn108NXNfS0Wo3IZm1-uxPZyfnTXBpF75Kg0Akrf3aXct4ejbOVp94_5AnAuPRE</recordid><startdate>20220218</startdate><enddate>20220218</enddate><creator>LIN YIWEI</creator><creator>LOU KECHEN</creator><creator>XU JINSHAN</creator><creator>WANG MENGTING</creator><creator>CHEN ZHENQIN</creator><scope>EVB</scope></search><sort><creationdate>20220218</creationdate><title>Image saliency detection method of double-current decoder based on information complementation</title><author>LIN YIWEI ; LOU KECHEN ; XU JINSHAN ; WANG MENGTING ; CHEN ZHENQIN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN114067101A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>LIN YIWEI</creatorcontrib><creatorcontrib>LOU KECHEN</creatorcontrib><creatorcontrib>XU JINSHAN</creatorcontrib><creatorcontrib>WANG MENGTING</creatorcontrib><creatorcontrib>CHEN ZHENQIN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LIN YIWEI</au><au>LOU KECHEN</au><au>XU JINSHAN</au><au>WANG MENGTING</au><au>CHEN ZHENQIN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Image saliency detection method of double-current decoder based on information complementation</title><date>2022-02-18</date><risdate>2022</risdate><abstract>The invention discloses an image saliency detection method of a double-flow decoder based on information complementation. The method comprises the following steps: S1, decomposing a label image to obtain a corresponding main body label image and a contour detail label image; S2, carrying out random cutting, random rotation, normalization and graying processing on the training data set image to enhance the diversity of a sample; S3, inputting an image, pre-processing the image by using a VGG16 framework, and respectively collecting image features of different sizes by using a group of coding blocks of different dimensions; S4, inputting the five-layer output feature map obtained by the encoder into an Embedding layer, and performing dimension unification; S5, respectively transmitting the encoded features of the target main body graph and the encoded features of the contour detail graph into a significance branch and a contour graph branch, and are respectively supervising the branches by using the obtained ma</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN114067101A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title Image saliency detection method of double-current decoder based on information complementation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T08%3A17%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LIN%20YIWEI&rft.date=2022-02-18&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN114067101A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true