Waveform recognition method based on deep neural network under small sample condition

The invention discloses a waveform recognition method based on a deep neural network under a small sample condition. The waveform recognition method comprises two parts of small sample amplification and waveform recognition. The small sample amplification comprises the steps of determining the minim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ZHANG SHUHENG, YU XIANGBIN, WANG CHENGHUA, HAO CHONGZHENG, DANG XIAOYU, ZHAI RUPING
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator ZHANG SHUHENG
YU XIANGBIN
WANG CHENGHUA
HAO CHONGZHENG
DANG XIAOYU
ZHAI RUPING
description The invention discloses a waveform recognition method based on a deep neural network under a small sample condition. The waveform recognition method comprises two parts of small sample amplification and waveform recognition. The small sample amplification comprises the steps of determining the minimum sampling sample number required by the amplification signal and realizing the small sample amplification by utilizing a probability density function estimation method. The invention comprises the following steps: firstly, determining a minimum sampling sample number required by a signal to be amplified through a KLIEP algorithm; then estimating a probability density function of a signal to be amplified through the minimum sampling sample, and completing amplification of the small sample according to the estimated probability density function; and finally, realizing waveform identification by using the amplified signal and the deep neural network. According to the method, the waveform recognition performance unde
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN114036983A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN114036983A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN114036983A3</originalsourceid><addsrcrecordid>eNqNjDEKAjEUBdNYiHqH7wEEl4hoKYtiZaVYLt_NW11M8kOS1esbxANYDQPDjNXlyi90Eh1FtHL3fe7Fk0N-iKEbJxgqboBAHkNkW5DfEp80eINIybG1lNgFC2rFm-9gqkYd24TZjxM1P-zP9XGBIA1S4BZl09Snqlot9Xq70Tv9T_MBDZw5lg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Waveform recognition method based on deep neural network under small sample condition</title><source>esp@cenet</source><creator>ZHANG SHUHENG ; YU XIANGBIN ; WANG CHENGHUA ; HAO CHONGZHENG ; DANG XIAOYU ; ZHAI RUPING</creator><creatorcontrib>ZHANG SHUHENG ; YU XIANGBIN ; WANG CHENGHUA ; HAO CHONGZHENG ; DANG XIAOYU ; ZHAI RUPING</creatorcontrib><description>The invention discloses a waveform recognition method based on a deep neural network under a small sample condition. The waveform recognition method comprises two parts of small sample amplification and waveform recognition. The small sample amplification comprises the steps of determining the minimum sampling sample number required by the amplification signal and realizing the small sample amplification by utilizing a probability density function estimation method. The invention comprises the following steps: firstly, determining a minimum sampling sample number required by a signal to be amplified through a KLIEP algorithm; then estimating a probability density function of a signal to be amplified through the minimum sampling sample, and completing amplification of the small sample according to the estimated probability density function; and finally, realizing waveform identification by using the amplified signal and the deep neural network. According to the method, the waveform recognition performance unde</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220211&amp;DB=EPODOC&amp;CC=CN&amp;NR=114036983A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76516</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220211&amp;DB=EPODOC&amp;CC=CN&amp;NR=114036983A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHANG SHUHENG</creatorcontrib><creatorcontrib>YU XIANGBIN</creatorcontrib><creatorcontrib>WANG CHENGHUA</creatorcontrib><creatorcontrib>HAO CHONGZHENG</creatorcontrib><creatorcontrib>DANG XIAOYU</creatorcontrib><creatorcontrib>ZHAI RUPING</creatorcontrib><title>Waveform recognition method based on deep neural network under small sample condition</title><description>The invention discloses a waveform recognition method based on a deep neural network under a small sample condition. The waveform recognition method comprises two parts of small sample amplification and waveform recognition. The small sample amplification comprises the steps of determining the minimum sampling sample number required by the amplification signal and realizing the small sample amplification by utilizing a probability density function estimation method. The invention comprises the following steps: firstly, determining a minimum sampling sample number required by a signal to be amplified through a KLIEP algorithm; then estimating a probability density function of a signal to be amplified through the minimum sampling sample, and completing amplification of the small sample according to the estimated probability density function; and finally, realizing waveform identification by using the amplified signal and the deep neural network. According to the method, the waveform recognition performance unde</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjDEKAjEUBdNYiHqH7wEEl4hoKYtiZaVYLt_NW11M8kOS1esbxANYDQPDjNXlyi90Eh1FtHL3fe7Fk0N-iKEbJxgqboBAHkNkW5DfEp80eINIybG1lNgFC2rFm-9gqkYd24TZjxM1P-zP9XGBIA1S4BZl09Snqlot9Xq70Tv9T_MBDZw5lg</recordid><startdate>20220211</startdate><enddate>20220211</enddate><creator>ZHANG SHUHENG</creator><creator>YU XIANGBIN</creator><creator>WANG CHENGHUA</creator><creator>HAO CHONGZHENG</creator><creator>DANG XIAOYU</creator><creator>ZHAI RUPING</creator><scope>EVB</scope></search><sort><creationdate>20220211</creationdate><title>Waveform recognition method based on deep neural network under small sample condition</title><author>ZHANG SHUHENG ; YU XIANGBIN ; WANG CHENGHUA ; HAO CHONGZHENG ; DANG XIAOYU ; ZHAI RUPING</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN114036983A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHANG SHUHENG</creatorcontrib><creatorcontrib>YU XIANGBIN</creatorcontrib><creatorcontrib>WANG CHENGHUA</creatorcontrib><creatorcontrib>HAO CHONGZHENG</creatorcontrib><creatorcontrib>DANG XIAOYU</creatorcontrib><creatorcontrib>ZHAI RUPING</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHANG SHUHENG</au><au>YU XIANGBIN</au><au>WANG CHENGHUA</au><au>HAO CHONGZHENG</au><au>DANG XIAOYU</au><au>ZHAI RUPING</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Waveform recognition method based on deep neural network under small sample condition</title><date>2022-02-11</date><risdate>2022</risdate><abstract>The invention discloses a waveform recognition method based on a deep neural network under a small sample condition. The waveform recognition method comprises two parts of small sample amplification and waveform recognition. The small sample amplification comprises the steps of determining the minimum sampling sample number required by the amplification signal and realizing the small sample amplification by utilizing a probability density function estimation method. The invention comprises the following steps: firstly, determining a minimum sampling sample number required by a signal to be amplified through a KLIEP algorithm; then estimating a probability density function of a signal to be amplified through the minimum sampling sample, and completing amplification of the small sample according to the estimated probability density function; and finally, realizing waveform identification by using the amplified signal and the deep neural network. According to the method, the waveform recognition performance unde</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN114036983A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title Waveform recognition method based on deep neural network under small sample condition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A43%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHANG%20SHUHENG&rft.date=2022-02-11&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN114036983A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true