Automatic power generation control scheduling method based on hybrid algorithm
The invention provides an automatic power generation control scheduling method based on a hybrid algorithm, and the method comprises the steps: designing a target function of an automatic power generation control scheduling model, achieving the minimization of total power deviation and the minimizat...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | MENG XIAN YANG BO MA HONGSHENG HE PENG HE TINGYI SHU HONGCHUN HE XIN |
description | The invention provides an automatic power generation control scheduling method based on a hybrid algorithm, and the method comprises the steps: designing a target function of an automatic power generation control scheduling model, achieving the minimization of total power deviation and the minimization of adjustment mileage payment, and building a dual-target scheduling model in which energy storage resources participate; setting constraint conditions of the scheduling model, and inputting real-time load disturbance conditions and initialization algorithm parameters; adopting a multi-target genetic algorithm and a multi-target particle swarm hybrid algorithm to execute non-dominated sorting, calculating the degree of congestion corresponding to individuals, selecting a solution set, and updating a Pareto solution set to perform a next iteration process; and repeatedly executing the steps until the algorithm converges, and determining the optimal compromise solution of the obtained Pareto frontier by using a m |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN113991751A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN113991751A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN113991751A3</originalsourceid><addsrcrecordid>eNqNjDEKwjAUQLM4iHqH7wEcQhHpWErFqZN7SZNvEkjyQ_KLeHszeACnx4PH24t52JiiYq8h0xsLWExYmlMCTYkLBajaodmCTxYisiMDq6pooCXusxZvQAVLxbOLR7F7qVDx9ONBnO_Tc3xcMNOCNSvd9ryMs5Rd38vbVQ7dP80Xav43LA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Automatic power generation control scheduling method based on hybrid algorithm</title><source>esp@cenet</source><creator>MENG XIAN ; YANG BO ; MA HONGSHENG ; HE PENG ; HE TINGYI ; SHU HONGCHUN ; HE XIN</creator><creatorcontrib>MENG XIAN ; YANG BO ; MA HONGSHENG ; HE PENG ; HE TINGYI ; SHU HONGCHUN ; HE XIN</creatorcontrib><description>The invention provides an automatic power generation control scheduling method based on a hybrid algorithm, and the method comprises the steps: designing a target function of an automatic power generation control scheduling model, achieving the minimization of total power deviation and the minimization of adjustment mileage payment, and building a dual-target scheduling model in which energy storage resources participate; setting constraint conditions of the scheduling model, and inputting real-time load disturbance conditions and initialization algorithm parameters; adopting a multi-target genetic algorithm and a multi-target particle swarm hybrid algorithm to execute non-dominated sorting, calculating the degree of congestion corresponding to individuals, selecting a solution set, and updating a Pareto solution set to perform a next iteration process; and repeatedly executing the steps until the algorithm converges, and determining the optimal compromise solution of the obtained Pareto frontier by using a m</description><language>chi ; eng</language><subject>CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTINGELECTRIC POWER ; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER ; ELECTRICITY ; GENERATION ; SYSTEMS FOR STORING ELECTRIC ENERGY</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220128&DB=EPODOC&CC=CN&NR=113991751A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220128&DB=EPODOC&CC=CN&NR=113991751A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>MENG XIAN</creatorcontrib><creatorcontrib>YANG BO</creatorcontrib><creatorcontrib>MA HONGSHENG</creatorcontrib><creatorcontrib>HE PENG</creatorcontrib><creatorcontrib>HE TINGYI</creatorcontrib><creatorcontrib>SHU HONGCHUN</creatorcontrib><creatorcontrib>HE XIN</creatorcontrib><title>Automatic power generation control scheduling method based on hybrid algorithm</title><description>The invention provides an automatic power generation control scheduling method based on a hybrid algorithm, and the method comprises the steps: designing a target function of an automatic power generation control scheduling model, achieving the minimization of total power deviation and the minimization of adjustment mileage payment, and building a dual-target scheduling model in which energy storage resources participate; setting constraint conditions of the scheduling model, and inputting real-time load disturbance conditions and initialization algorithm parameters; adopting a multi-target genetic algorithm and a multi-target particle swarm hybrid algorithm to execute non-dominated sorting, calculating the degree of congestion corresponding to individuals, selecting a solution set, and updating a Pareto solution set to perform a next iteration process; and repeatedly executing the steps until the algorithm converges, and determining the optimal compromise solution of the obtained Pareto frontier by using a m</description><subject>CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTINGELECTRIC POWER</subject><subject>CONVERSION OR DISTRIBUTION OF ELECTRIC POWER</subject><subject>ELECTRICITY</subject><subject>GENERATION</subject><subject>SYSTEMS FOR STORING ELECTRIC ENERGY</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjDEKwjAUQLM4iHqH7wEcQhHpWErFqZN7SZNvEkjyQ_KLeHszeACnx4PH24t52JiiYq8h0xsLWExYmlMCTYkLBajaodmCTxYisiMDq6pooCXusxZvQAVLxbOLR7F7qVDx9ONBnO_Tc3xcMNOCNSvd9ryMs5Rd38vbVQ7dP80Xav43LA</recordid><startdate>20220128</startdate><enddate>20220128</enddate><creator>MENG XIAN</creator><creator>YANG BO</creator><creator>MA HONGSHENG</creator><creator>HE PENG</creator><creator>HE TINGYI</creator><creator>SHU HONGCHUN</creator><creator>HE XIN</creator><scope>EVB</scope></search><sort><creationdate>20220128</creationdate><title>Automatic power generation control scheduling method based on hybrid algorithm</title><author>MENG XIAN ; YANG BO ; MA HONGSHENG ; HE PENG ; HE TINGYI ; SHU HONGCHUN ; HE XIN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN113991751A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTINGELECTRIC POWER</topic><topic>CONVERSION OR DISTRIBUTION OF ELECTRIC POWER</topic><topic>ELECTRICITY</topic><topic>GENERATION</topic><topic>SYSTEMS FOR STORING ELECTRIC ENERGY</topic><toplevel>online_resources</toplevel><creatorcontrib>MENG XIAN</creatorcontrib><creatorcontrib>YANG BO</creatorcontrib><creatorcontrib>MA HONGSHENG</creatorcontrib><creatorcontrib>HE PENG</creatorcontrib><creatorcontrib>HE TINGYI</creatorcontrib><creatorcontrib>SHU HONGCHUN</creatorcontrib><creatorcontrib>HE XIN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>MENG XIAN</au><au>YANG BO</au><au>MA HONGSHENG</au><au>HE PENG</au><au>HE TINGYI</au><au>SHU HONGCHUN</au><au>HE XIN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Automatic power generation control scheduling method based on hybrid algorithm</title><date>2022-01-28</date><risdate>2022</risdate><abstract>The invention provides an automatic power generation control scheduling method based on a hybrid algorithm, and the method comprises the steps: designing a target function of an automatic power generation control scheduling model, achieving the minimization of total power deviation and the minimization of adjustment mileage payment, and building a dual-target scheduling model in which energy storage resources participate; setting constraint conditions of the scheduling model, and inputting real-time load disturbance conditions and initialization algorithm parameters; adopting a multi-target genetic algorithm and a multi-target particle swarm hybrid algorithm to execute non-dominated sorting, calculating the degree of congestion corresponding to individuals, selecting a solution set, and updating a Pareto solution set to perform a next iteration process; and repeatedly executing the steps until the algorithm converges, and determining the optimal compromise solution of the obtained Pareto frontier by using a m</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN113991751A |
source | esp@cenet |
subjects | CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTINGELECTRIC POWER CONVERSION OR DISTRIBUTION OF ELECTRIC POWER ELECTRICITY GENERATION SYSTEMS FOR STORING ELECTRIC ENERGY |
title | Automatic power generation control scheduling method based on hybrid algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T22%3A59%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=MENG%20XIAN&rft.date=2022-01-28&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN113991751A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |