Seismic data multi-domain processing method and device based on machine learning
The invention provides a seismic data multi-domain processing method and device based on machine learning. The seismic data multi-domain processing method based on machine learning comprises the steps of obtaining seismic data of a target work area; and according to a pre-generated machine learning...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | ZENG TONGSHENG CUI DONG SHOU HAO CAO HONG |
description | The invention provides a seismic data multi-domain processing method and device based on machine learning. The seismic data multi-domain processing method based on machine learning comprises the steps of obtaining seismic data of a target work area; and according to a pre-generated machine learning model and the seismic data, determining a feature domain range in a plurality of domains of the seismic data. According to the seismic data multi-domain processing method and device based on machine learning provided by the invention, the dimension range of the machine learning model during seismic data processing can be expanded, and the characteristics of the seismic data can be judged more comprehensively, so that the precision of processing the seismic data by using the machine learning is improved.
本发明提供了一种基于机器学习的地震数据多域处理方法及装置,基于机器学习的地震数据多域处理方法包括:获取目标工区的地震数据;根据预生成的机器学习模型以及所述地震数据,确定所述地震数据多个域中的特征域范围。本发明所提供的基于机器学习的地震数据多域处理方法及装置,可以拓展地震数据处理时机器学习模型的维度范围,更加综合的判断地震数据的特征,从而提高使用机器学习处理地震数据的精度。 |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN113971415A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN113971415A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN113971415A3</originalsourceid><addsrcrecordid>eNqNyjEKAjEQBdA0FqLeYTzAFmEVsZRFsRJB-2VMvrsDySRsoufXwgNYvebNzfUGKVEcea5M8RWqND5FFqU8JYdSRAeKqGPyxOrJ4y0O9OACT0kpshtFQQE86fcuzezJoWD1c2HWp-O9OzfIqUfJ7KCofXextt3v7MZuD-0_5wN9KzcQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Seismic data multi-domain processing method and device based on machine learning</title><source>esp@cenet</source><creator>ZENG TONGSHENG ; CUI DONG ; SHOU HAO ; CAO HONG</creator><creatorcontrib>ZENG TONGSHENG ; CUI DONG ; SHOU HAO ; CAO HONG</creatorcontrib><description>The invention provides a seismic data multi-domain processing method and device based on machine learning. The seismic data multi-domain processing method based on machine learning comprises the steps of obtaining seismic data of a target work area; and according to a pre-generated machine learning model and the seismic data, determining a feature domain range in a plurality of domains of the seismic data. According to the seismic data multi-domain processing method and device based on machine learning provided by the invention, the dimension range of the machine learning model during seismic data processing can be expanded, and the characteristics of the seismic data can be judged more comprehensively, so that the precision of processing the seismic data by using the machine learning is improved.
本发明提供了一种基于机器学习的地震数据多域处理方法及装置,基于机器学习的地震数据多域处理方法包括:获取目标工区的地震数据;根据预生成的机器学习模型以及所述地震数据,确定所述地震数据多个域中的特征域范围。本发明所提供的基于机器学习的地震数据多域处理方法及装置,可以拓展地震数据处理时机器学习模型的维度范围,更加综合的判断地震数据的特征,从而提高使用机器学习处理地震数据的精度。</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DETECTING MASSES OR OBJECTS ; GEOPHYSICS ; GRAVITATIONAL MEASUREMENTS ; HANDLING RECORD CARRIERS ; MEASURING ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS ; TESTING</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220125&DB=EPODOC&CC=CN&NR=113971415A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220125&DB=EPODOC&CC=CN&NR=113971415A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZENG TONGSHENG</creatorcontrib><creatorcontrib>CUI DONG</creatorcontrib><creatorcontrib>SHOU HAO</creatorcontrib><creatorcontrib>CAO HONG</creatorcontrib><title>Seismic data multi-domain processing method and device based on machine learning</title><description>The invention provides a seismic data multi-domain processing method and device based on machine learning. The seismic data multi-domain processing method based on machine learning comprises the steps of obtaining seismic data of a target work area; and according to a pre-generated machine learning model and the seismic data, determining a feature domain range in a plurality of domains of the seismic data. According to the seismic data multi-domain processing method and device based on machine learning provided by the invention, the dimension range of the machine learning model during seismic data processing can be expanded, and the characteristics of the seismic data can be judged more comprehensively, so that the precision of processing the seismic data by using the machine learning is improved.
本发明提供了一种基于机器学习的地震数据多域处理方法及装置,基于机器学习的地震数据多域处理方法包括:获取目标工区的地震数据;根据预生成的机器学习模型以及所述地震数据,确定所述地震数据多个域中的特征域范围。本发明所提供的基于机器学习的地震数据多域处理方法及装置,可以拓展地震数据处理时机器学习模型的维度范围,更加综合的判断地震数据的特征,从而提高使用机器学习处理地震数据的精度。</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DETECTING MASSES OR OBJECTS</subject><subject>GEOPHYSICS</subject><subject>GRAVITATIONAL MEASUREMENTS</subject><subject>HANDLING RECORD CARRIERS</subject><subject>MEASURING</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyjEKAjEQBdA0FqLeYTzAFmEVsZRFsRJB-2VMvrsDySRsoufXwgNYvebNzfUGKVEcea5M8RWqND5FFqU8JYdSRAeKqGPyxOrJ4y0O9OACT0kpshtFQQE86fcuzezJoWD1c2HWp-O9OzfIqUfJ7KCofXextt3v7MZuD-0_5wN9KzcQ</recordid><startdate>20220125</startdate><enddate>20220125</enddate><creator>ZENG TONGSHENG</creator><creator>CUI DONG</creator><creator>SHOU HAO</creator><creator>CAO HONG</creator><scope>EVB</scope></search><sort><creationdate>20220125</creationdate><title>Seismic data multi-domain processing method and device based on machine learning</title><author>ZENG TONGSHENG ; CUI DONG ; SHOU HAO ; CAO HONG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN113971415A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DETECTING MASSES OR OBJECTS</topic><topic>GEOPHYSICS</topic><topic>GRAVITATIONAL MEASUREMENTS</topic><topic>HANDLING RECORD CARRIERS</topic><topic>MEASURING</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>ZENG TONGSHENG</creatorcontrib><creatorcontrib>CUI DONG</creatorcontrib><creatorcontrib>SHOU HAO</creatorcontrib><creatorcontrib>CAO HONG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZENG TONGSHENG</au><au>CUI DONG</au><au>SHOU HAO</au><au>CAO HONG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Seismic data multi-domain processing method and device based on machine learning</title><date>2022-01-25</date><risdate>2022</risdate><abstract>The invention provides a seismic data multi-domain processing method and device based on machine learning. The seismic data multi-domain processing method based on machine learning comprises the steps of obtaining seismic data of a target work area; and according to a pre-generated machine learning model and the seismic data, determining a feature domain range in a plurality of domains of the seismic data. According to the seismic data multi-domain processing method and device based on machine learning provided by the invention, the dimension range of the machine learning model during seismic data processing can be expanded, and the characteristics of the seismic data can be judged more comprehensively, so that the precision of processing the seismic data by using the machine learning is improved.
本发明提供了一种基于机器学习的地震数据多域处理方法及装置,基于机器学习的地震数据多域处理方法包括:获取目标工区的地震数据;根据预生成的机器学习模型以及所述地震数据,确定所述地震数据多个域中的特征域范围。本发明所提供的基于机器学习的地震数据多域处理方法及装置,可以拓展地震数据处理时机器学习模型的维度范围,更加综合的判断地震数据的特征,从而提高使用机器学习处理地震数据的精度。</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN113971415A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING DETECTING MASSES OR OBJECTS GEOPHYSICS GRAVITATIONAL MEASUREMENTS HANDLING RECORD CARRIERS MEASURING PHYSICS PRESENTATION OF DATA RECOGNITION OF DATA RECORD CARRIERS TESTING |
title | Seismic data multi-domain processing method and device based on machine learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T09%3A18%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZENG%20TONGSHENG&rft.date=2022-01-25&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN113971415A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |