Thermal error prediction model method for electric spindle with variable bearing pre-tightening force
The invention discloses a thermal error prediction model method for an electric spindle with variable bearing pre-tightening force, which comprises the following steps: constructing an electric spindle temperature field model, and analyzing the temperature of a heat source and the temperature of a k...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | DAI YE WANG GANG LI ZHAOLONG XUAN LIYU LIU GUANGDONG |
description | The invention discloses a thermal error prediction model method for an electric spindle with variable bearing pre-tightening force, which comprises the following steps: constructing an electric spindle temperature field model, and analyzing the temperature of a heat source and the temperature of a key component; establishing a motorized spindle statics finite element model by using different pretightening force conditions and spindle component parameters changed due to temperature change under the conditions, and analyzing the relationship between the thermal error of the motorized spindle and the pretightening force and the temperature; establishing a grey wolf optimization algorithm (GWO) model, adopting a mode of randomly generating a grey wolf population, initializing positions of alpha, beta and delta wolf of a grey wolf pack, globally searching a fitness optimal value of each body of the wolf pack, and searching a penalty factor (C) and a kernel function width (g) of a support vector regression (SVM) mo |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN113935130A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN113935130A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN113935130A3</originalsourceid><addsrcrecordid>eNqNjE0KwjAUhLtxIeodngcoWIILl1Iqrlx1X9Jk2jxIk_Aa9Pqm4AFczXzMz75C7yCL9gSRKJQElk3mGGiJFp4WZBctTSWDh8nChtbEwXrQh7OjtxbWY6ERxYV5u6gzzy4jbFiWBsdqN2m_4vTTQ3V-dH37rJHigDVpg4A8tK-mUTd1bdTlrv7pfAFe5D-J</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Thermal error prediction model method for electric spindle with variable bearing pre-tightening force</title><source>esp@cenet</source><creator>DAI YE ; WANG GANG ; LI ZHAOLONG ; XUAN LIYU ; LIU GUANGDONG</creator><creatorcontrib>DAI YE ; WANG GANG ; LI ZHAOLONG ; XUAN LIYU ; LIU GUANGDONG</creatorcontrib><description>The invention discloses a thermal error prediction model method for an electric spindle with variable bearing pre-tightening force, which comprises the following steps: constructing an electric spindle temperature field model, and analyzing the temperature of a heat source and the temperature of a key component; establishing a motorized spindle statics finite element model by using different pretightening force conditions and spindle component parameters changed due to temperature change under the conditions, and analyzing the relationship between the thermal error of the motorized spindle and the pretightening force and the temperature; establishing a grey wolf optimization algorithm (GWO) model, adopting a mode of randomly generating a grey wolf population, initializing positions of alpha, beta and delta wolf of a grey wolf pack, globally searching a fitness optimal value of each body of the wolf pack, and searching a penalty factor (C) and a kernel function width (g) of a support vector regression (SVM) mo</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220114&DB=EPODOC&CC=CN&NR=113935130A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220114&DB=EPODOC&CC=CN&NR=113935130A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>DAI YE</creatorcontrib><creatorcontrib>WANG GANG</creatorcontrib><creatorcontrib>LI ZHAOLONG</creatorcontrib><creatorcontrib>XUAN LIYU</creatorcontrib><creatorcontrib>LIU GUANGDONG</creatorcontrib><title>Thermal error prediction model method for electric spindle with variable bearing pre-tightening force</title><description>The invention discloses a thermal error prediction model method for an electric spindle with variable bearing pre-tightening force, which comprises the following steps: constructing an electric spindle temperature field model, and analyzing the temperature of a heat source and the temperature of a key component; establishing a motorized spindle statics finite element model by using different pretightening force conditions and spindle component parameters changed due to temperature change under the conditions, and analyzing the relationship between the thermal error of the motorized spindle and the pretightening force and the temperature; establishing a grey wolf optimization algorithm (GWO) model, adopting a mode of randomly generating a grey wolf population, initializing positions of alpha, beta and delta wolf of a grey wolf pack, globally searching a fitness optimal value of each body of the wolf pack, and searching a penalty factor (C) and a kernel function width (g) of a support vector regression (SVM) mo</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjE0KwjAUhLtxIeodngcoWIILl1Iqrlx1X9Jk2jxIk_Aa9Pqm4AFczXzMz75C7yCL9gSRKJQElk3mGGiJFp4WZBctTSWDh8nChtbEwXrQh7OjtxbWY6ERxYV5u6gzzy4jbFiWBsdqN2m_4vTTQ3V-dH37rJHigDVpg4A8tK-mUTd1bdTlrv7pfAFe5D-J</recordid><startdate>20220114</startdate><enddate>20220114</enddate><creator>DAI YE</creator><creator>WANG GANG</creator><creator>LI ZHAOLONG</creator><creator>XUAN LIYU</creator><creator>LIU GUANGDONG</creator><scope>EVB</scope></search><sort><creationdate>20220114</creationdate><title>Thermal error prediction model method for electric spindle with variable bearing pre-tightening force</title><author>DAI YE ; WANG GANG ; LI ZHAOLONG ; XUAN LIYU ; LIU GUANGDONG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN113935130A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>DAI YE</creatorcontrib><creatorcontrib>WANG GANG</creatorcontrib><creatorcontrib>LI ZHAOLONG</creatorcontrib><creatorcontrib>XUAN LIYU</creatorcontrib><creatorcontrib>LIU GUANGDONG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>DAI YE</au><au>WANG GANG</au><au>LI ZHAOLONG</au><au>XUAN LIYU</au><au>LIU GUANGDONG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Thermal error prediction model method for electric spindle with variable bearing pre-tightening force</title><date>2022-01-14</date><risdate>2022</risdate><abstract>The invention discloses a thermal error prediction model method for an electric spindle with variable bearing pre-tightening force, which comprises the following steps: constructing an electric spindle temperature field model, and analyzing the temperature of a heat source and the temperature of a key component; establishing a motorized spindle statics finite element model by using different pretightening force conditions and spindle component parameters changed due to temperature change under the conditions, and analyzing the relationship between the thermal error of the motorized spindle and the pretightening force and the temperature; establishing a grey wolf optimization algorithm (GWO) model, adopting a mode of randomly generating a grey wolf population, initializing positions of alpha, beta and delta wolf of a grey wolf pack, globally searching a fitness optimal value of each body of the wolf pack, and searching a penalty factor (C) and a kernel function width (g) of a support vector regression (SVM) mo</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN113935130A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | Thermal error prediction model method for electric spindle with variable bearing pre-tightening force |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T05%3A20%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=DAI%20YE&rft.date=2022-01-14&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN113935130A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |