Thermal error prediction model method for electric spindle with variable bearing pre-tightening force

The invention discloses a thermal error prediction model method for an electric spindle with variable bearing pre-tightening force, which comprises the following steps: constructing an electric spindle temperature field model, and analyzing the temperature of a heat source and the temperature of a k...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: DAI YE, WANG GANG, LI ZHAOLONG, XUAN LIYU, LIU GUANGDONG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator DAI YE
WANG GANG
LI ZHAOLONG
XUAN LIYU
LIU GUANGDONG
description The invention discloses a thermal error prediction model method for an electric spindle with variable bearing pre-tightening force, which comprises the following steps: constructing an electric spindle temperature field model, and analyzing the temperature of a heat source and the temperature of a key component; establishing a motorized spindle statics finite element model by using different pretightening force conditions and spindle component parameters changed due to temperature change under the conditions, and analyzing the relationship between the thermal error of the motorized spindle and the pretightening force and the temperature; establishing a grey wolf optimization algorithm (GWO) model, adopting a mode of randomly generating a grey wolf population, initializing positions of alpha, beta and delta wolf of a grey wolf pack, globally searching a fitness optimal value of each body of the wolf pack, and searching a penalty factor (C) and a kernel function width (g) of a support vector regression (SVM) mo
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN113935130A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN113935130A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN113935130A3</originalsourceid><addsrcrecordid>eNqNjE0KwjAUhLtxIeodngcoWIILl1Iqrlx1X9Jk2jxIk_Aa9Pqm4AFczXzMz75C7yCL9gSRKJQElk3mGGiJFp4WZBctTSWDh8nChtbEwXrQh7OjtxbWY6ERxYV5u6gzzy4jbFiWBsdqN2m_4vTTQ3V-dH37rJHigDVpg4A8tK-mUTd1bdTlrv7pfAFe5D-J</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Thermal error prediction model method for electric spindle with variable bearing pre-tightening force</title><source>esp@cenet</source><creator>DAI YE ; WANG GANG ; LI ZHAOLONG ; XUAN LIYU ; LIU GUANGDONG</creator><creatorcontrib>DAI YE ; WANG GANG ; LI ZHAOLONG ; XUAN LIYU ; LIU GUANGDONG</creatorcontrib><description>The invention discloses a thermal error prediction model method for an electric spindle with variable bearing pre-tightening force, which comprises the following steps: constructing an electric spindle temperature field model, and analyzing the temperature of a heat source and the temperature of a key component; establishing a motorized spindle statics finite element model by using different pretightening force conditions and spindle component parameters changed due to temperature change under the conditions, and analyzing the relationship between the thermal error of the motorized spindle and the pretightening force and the temperature; establishing a grey wolf optimization algorithm (GWO) model, adopting a mode of randomly generating a grey wolf population, initializing positions of alpha, beta and delta wolf of a grey wolf pack, globally searching a fitness optimal value of each body of the wolf pack, and searching a penalty factor (C) and a kernel function width (g) of a support vector regression (SVM) mo</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220114&amp;DB=EPODOC&amp;CC=CN&amp;NR=113935130A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220114&amp;DB=EPODOC&amp;CC=CN&amp;NR=113935130A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>DAI YE</creatorcontrib><creatorcontrib>WANG GANG</creatorcontrib><creatorcontrib>LI ZHAOLONG</creatorcontrib><creatorcontrib>XUAN LIYU</creatorcontrib><creatorcontrib>LIU GUANGDONG</creatorcontrib><title>Thermal error prediction model method for electric spindle with variable bearing pre-tightening force</title><description>The invention discloses a thermal error prediction model method for an electric spindle with variable bearing pre-tightening force, which comprises the following steps: constructing an electric spindle temperature field model, and analyzing the temperature of a heat source and the temperature of a key component; establishing a motorized spindle statics finite element model by using different pretightening force conditions and spindle component parameters changed due to temperature change under the conditions, and analyzing the relationship between the thermal error of the motorized spindle and the pretightening force and the temperature; establishing a grey wolf optimization algorithm (GWO) model, adopting a mode of randomly generating a grey wolf population, initializing positions of alpha, beta and delta wolf of a grey wolf pack, globally searching a fitness optimal value of each body of the wolf pack, and searching a penalty factor (C) and a kernel function width (g) of a support vector regression (SVM) mo</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjE0KwjAUhLtxIeodngcoWIILl1Iqrlx1X9Jk2jxIk_Aa9Pqm4AFczXzMz75C7yCL9gSRKJQElk3mGGiJFp4WZBctTSWDh8nChtbEwXrQh7OjtxbWY6ERxYV5u6gzzy4jbFiWBsdqN2m_4vTTQ3V-dH37rJHigDVpg4A8tK-mUTd1bdTlrv7pfAFe5D-J</recordid><startdate>20220114</startdate><enddate>20220114</enddate><creator>DAI YE</creator><creator>WANG GANG</creator><creator>LI ZHAOLONG</creator><creator>XUAN LIYU</creator><creator>LIU GUANGDONG</creator><scope>EVB</scope></search><sort><creationdate>20220114</creationdate><title>Thermal error prediction model method for electric spindle with variable bearing pre-tightening force</title><author>DAI YE ; WANG GANG ; LI ZHAOLONG ; XUAN LIYU ; LIU GUANGDONG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN113935130A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>DAI YE</creatorcontrib><creatorcontrib>WANG GANG</creatorcontrib><creatorcontrib>LI ZHAOLONG</creatorcontrib><creatorcontrib>XUAN LIYU</creatorcontrib><creatorcontrib>LIU GUANGDONG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>DAI YE</au><au>WANG GANG</au><au>LI ZHAOLONG</au><au>XUAN LIYU</au><au>LIU GUANGDONG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Thermal error prediction model method for electric spindle with variable bearing pre-tightening force</title><date>2022-01-14</date><risdate>2022</risdate><abstract>The invention discloses a thermal error prediction model method for an electric spindle with variable bearing pre-tightening force, which comprises the following steps: constructing an electric spindle temperature field model, and analyzing the temperature of a heat source and the temperature of a key component; establishing a motorized spindle statics finite element model by using different pretightening force conditions and spindle component parameters changed due to temperature change under the conditions, and analyzing the relationship between the thermal error of the motorized spindle and the pretightening force and the temperature; establishing a grey wolf optimization algorithm (GWO) model, adopting a mode of randomly generating a grey wolf population, initializing positions of alpha, beta and delta wolf of a grey wolf pack, globally searching a fitness optimal value of each body of the wolf pack, and searching a penalty factor (C) and a kernel function width (g) of a support vector regression (SVM) mo</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN113935130A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Thermal error prediction model method for electric spindle with variable bearing pre-tightening force
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T05%3A20%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=DAI%20YE&rft.date=2022-01-14&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN113935130A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true