Physical driven neural network-based color generalization imaging method of through scattering medium

The invention discloses a physical driven neural network-based color generalization imaging method of a through scattering medium. The method comprises the following steps of: establishing a neural network in which a physical model and a neural network model are driven by each other, and establishin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: HAN JING, SHI JILING, ZHU SHUO, BAI LIANFA, CUI QIANYING, WANG XIAOYING, ZHOU CHENYIN, ZHANG MINGXING, ZHANG YI, GANG SHUNKUI, GU JIE, GUO ENLAI, ZHAO ZHUANG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator HAN JING
SHI JILING
ZHU SHUO
BAI LIANFA
CUI QIANYING
WANG XIAOYING
ZHOU CHENYIN
ZHANG MINGXING
ZHANG YI
GANG SHUNKUI
GU JIE
GUO ENLAI
ZHAO ZHUANG
description The invention discloses a physical driven neural network-based color generalization imaging method of a through scattering medium. The method comprises the following steps of: establishing a neural network in which a physical model and a neural network model are driven by each other, and establishing system configuration for acquiring experimental image data, and preprocessing collected image data and sending the preprocessed image data to the neural network so as to perform image restoration and reconstruction. According to the method of the invention, on the basis of effective combination of speckle correlation and speckle redundancy physical prior and strong data mining and mapping capabilities of the multi-channel convolutional neural network, high-quality recovery of a target can be realized under the condition that a multispectral complex target penetrating through an unknown scattering medium can be realized only by using speckle data of one medium; and the generalization imaging of a physical percepti
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN113920297A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN113920297A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN113920297A3</originalsourceid><addsrcrecordid>eNqNjDEKwkAQRdNYiHqH8QABkxRiKUGxEgv7MO5OdgeTnbA7UfT0BvQAVo_P-7x5Rhf_SmywAxv5QQECjXFagfQp8Z7fMJEFI51EcBRocvxGZQnAPToODnpSLxakBfVRRuchGVSl-JWWx36ZzVrsEq1-XGTr4-Fan3IapKE0oJnS2tTnoqh25abcbffVP58Pn_FAFQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Physical driven neural network-based color generalization imaging method of through scattering medium</title><source>esp@cenet</source><creator>HAN JING ; SHI JILING ; ZHU SHUO ; BAI LIANFA ; CUI QIANYING ; WANG XIAOYING ; ZHOU CHENYIN ; ZHANG MINGXING ; ZHANG YI ; GANG SHUNKUI ; GU JIE ; GUO ENLAI ; ZHAO ZHUANG</creator><creatorcontrib>HAN JING ; SHI JILING ; ZHU SHUO ; BAI LIANFA ; CUI QIANYING ; WANG XIAOYING ; ZHOU CHENYIN ; ZHANG MINGXING ; ZHANG YI ; GANG SHUNKUI ; GU JIE ; GUO ENLAI ; ZHAO ZHUANG</creatorcontrib><description>The invention discloses a physical driven neural network-based color generalization imaging method of a through scattering medium. The method comprises the following steps of: establishing a neural network in which a physical model and a neural network model are driven by each other, and establishing system configuration for acquiring experimental image data, and preprocessing collected image data and sending the preprocessed image data to the neural network so as to perform image restoration and reconstruction. According to the method of the invention, on the basis of effective combination of speckle correlation and speckle redundancy physical prior and strong data mining and mapping capabilities of the multi-channel convolutional neural network, high-quality recovery of a target can be realized under the condition that a multispectral complex target penetrating through an unknown scattering medium can be realized only by using speckle data of one medium; and the generalization imaging of a physical percepti</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220111&amp;DB=EPODOC&amp;CC=CN&amp;NR=113920297A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76516</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220111&amp;DB=EPODOC&amp;CC=CN&amp;NR=113920297A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>HAN JING</creatorcontrib><creatorcontrib>SHI JILING</creatorcontrib><creatorcontrib>ZHU SHUO</creatorcontrib><creatorcontrib>BAI LIANFA</creatorcontrib><creatorcontrib>CUI QIANYING</creatorcontrib><creatorcontrib>WANG XIAOYING</creatorcontrib><creatorcontrib>ZHOU CHENYIN</creatorcontrib><creatorcontrib>ZHANG MINGXING</creatorcontrib><creatorcontrib>ZHANG YI</creatorcontrib><creatorcontrib>GANG SHUNKUI</creatorcontrib><creatorcontrib>GU JIE</creatorcontrib><creatorcontrib>GUO ENLAI</creatorcontrib><creatorcontrib>ZHAO ZHUANG</creatorcontrib><title>Physical driven neural network-based color generalization imaging method of through scattering medium</title><description>The invention discloses a physical driven neural network-based color generalization imaging method of a through scattering medium. The method comprises the following steps of: establishing a neural network in which a physical model and a neural network model are driven by each other, and establishing system configuration for acquiring experimental image data, and preprocessing collected image data and sending the preprocessed image data to the neural network so as to perform image restoration and reconstruction. According to the method of the invention, on the basis of effective combination of speckle correlation and speckle redundancy physical prior and strong data mining and mapping capabilities of the multi-channel convolutional neural network, high-quality recovery of a target can be realized under the condition that a multispectral complex target penetrating through an unknown scattering medium can be realized only by using speckle data of one medium; and the generalization imaging of a physical percepti</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjDEKwkAQRdNYiHqH8QABkxRiKUGxEgv7MO5OdgeTnbA7UfT0BvQAVo_P-7x5Rhf_SmywAxv5QQECjXFagfQp8Z7fMJEFI51EcBRocvxGZQnAPToODnpSLxakBfVRRuchGVSl-JWWx36ZzVrsEq1-XGTr4-Fan3IapKE0oJnS2tTnoqh25abcbffVP58Pn_FAFQ</recordid><startdate>20220111</startdate><enddate>20220111</enddate><creator>HAN JING</creator><creator>SHI JILING</creator><creator>ZHU SHUO</creator><creator>BAI LIANFA</creator><creator>CUI QIANYING</creator><creator>WANG XIAOYING</creator><creator>ZHOU CHENYIN</creator><creator>ZHANG MINGXING</creator><creator>ZHANG YI</creator><creator>GANG SHUNKUI</creator><creator>GU JIE</creator><creator>GUO ENLAI</creator><creator>ZHAO ZHUANG</creator><scope>EVB</scope></search><sort><creationdate>20220111</creationdate><title>Physical driven neural network-based color generalization imaging method of through scattering medium</title><author>HAN JING ; SHI JILING ; ZHU SHUO ; BAI LIANFA ; CUI QIANYING ; WANG XIAOYING ; ZHOU CHENYIN ; ZHANG MINGXING ; ZHANG YI ; GANG SHUNKUI ; GU JIE ; GUO ENLAI ; ZHAO ZHUANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN113920297A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>HAN JING</creatorcontrib><creatorcontrib>SHI JILING</creatorcontrib><creatorcontrib>ZHU SHUO</creatorcontrib><creatorcontrib>BAI LIANFA</creatorcontrib><creatorcontrib>CUI QIANYING</creatorcontrib><creatorcontrib>WANG XIAOYING</creatorcontrib><creatorcontrib>ZHOU CHENYIN</creatorcontrib><creatorcontrib>ZHANG MINGXING</creatorcontrib><creatorcontrib>ZHANG YI</creatorcontrib><creatorcontrib>GANG SHUNKUI</creatorcontrib><creatorcontrib>GU JIE</creatorcontrib><creatorcontrib>GUO ENLAI</creatorcontrib><creatorcontrib>ZHAO ZHUANG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>HAN JING</au><au>SHI JILING</au><au>ZHU SHUO</au><au>BAI LIANFA</au><au>CUI QIANYING</au><au>WANG XIAOYING</au><au>ZHOU CHENYIN</au><au>ZHANG MINGXING</au><au>ZHANG YI</au><au>GANG SHUNKUI</au><au>GU JIE</au><au>GUO ENLAI</au><au>ZHAO ZHUANG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Physical driven neural network-based color generalization imaging method of through scattering medium</title><date>2022-01-11</date><risdate>2022</risdate><abstract>The invention discloses a physical driven neural network-based color generalization imaging method of a through scattering medium. The method comprises the following steps of: establishing a neural network in which a physical model and a neural network model are driven by each other, and establishing system configuration for acquiring experimental image data, and preprocessing collected image data and sending the preprocessed image data to the neural network so as to perform image restoration and reconstruction. According to the method of the invention, on the basis of effective combination of speckle correlation and speckle redundancy physical prior and strong data mining and mapping capabilities of the multi-channel convolutional neural network, high-quality recovery of a target can be realized under the condition that a multispectral complex target penetrating through an unknown scattering medium can be realized only by using speckle data of one medium; and the generalization imaging of a physical percepti</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN113920297A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title Physical driven neural network-based color generalization imaging method of through scattering medium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T05%3A32%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=HAN%20JING&rft.date=2022-01-11&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN113920297A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true