Recommendation method based on a food safety grade score value and food similarity of a user

The invention discloses a recommendation method based on a food safety grade score value and food similarity of a user. The recommendation method comprises the following steps: 1) obtaining score data of the user on food; 2) calculating the scoring weight of each piece of scoring data; 3) inputting...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LU ZELUN, MAO YIJUN, GU WANRONG, HE HAOMING, ZHU YIXIN, GUO MEIPING, LIANG ZAOQING, XIONG YI, CHEN ZIMING
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LU ZELUN
MAO YIJUN
GU WANRONG
HE HAOMING
ZHU YIXIN
GUO MEIPING
LIANG ZAOQING
XIONG YI
CHEN ZIMING
description The invention discloses a recommendation method based on a food safety grade score value and food similarity of a user. The recommendation method comprises the following steps: 1) obtaining score data of the user on food; 2) calculating the scoring weight of each piece of scoring data; 3) inputting the scoring data and the scoring weight into a machine learning model for parameter training; and 4) after the parameter training is completed, obtaining a food similarity matrix, and finally calculating and generating a food recommendation list of the user through the score data of the user and the food similarity matrix, so that food is recommended to the user. According to the method, a machine learning model is trained, a neighborhood-based collaborative filtering method is combined and used, a similarity matrix of food is learned from scoring data of the food by a user, and sparsity is introduced into the similarity matrix while the time sequence of the scoring data is considered, so that recommendation can be
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN113888252A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN113888252A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN113888252A3</originalsourceid><addsrcrecordid>eNqNy7EKwjAUheEsDqK-w_UBHNoiZJWiODmIo1CuzYkNNLklSQXf3gx9AKfDD99Zq-cdvXiPYDg7CeSRBzH04gRDpZmslE5skb_0jmxAqZcI-vA4gziYRTjvRo6uKLHlNifErVpZHhN2y27U_nJ-tNcDJumQJu4RkLv2VlWN1ro-1qfmH_MDYfQ7KQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Recommendation method based on a food safety grade score value and food similarity of a user</title><source>esp@cenet</source><creator>LU ZELUN ; MAO YIJUN ; GU WANRONG ; HE HAOMING ; ZHU YIXIN ; GUO MEIPING ; LIANG ZAOQING ; XIONG YI ; CHEN ZIMING</creator><creatorcontrib>LU ZELUN ; MAO YIJUN ; GU WANRONG ; HE HAOMING ; ZHU YIXIN ; GUO MEIPING ; LIANG ZAOQING ; XIONG YI ; CHEN ZIMING</creatorcontrib><description>The invention discloses a recommendation method based on a food safety grade score value and food similarity of a user. The recommendation method comprises the following steps: 1) obtaining score data of the user on food; 2) calculating the scoring weight of each piece of scoring data; 3) inputting the scoring data and the scoring weight into a machine learning model for parameter training; and 4) after the parameter training is completed, obtaining a food similarity matrix, and finally calculating and generating a food recommendation list of the user through the score data of the user and the food similarity matrix, so that food is recommended to the user. According to the method, a machine learning model is trained, a neighborhood-based collaborative filtering method is combined and used, a similarity matrix of food is learned from scoring data of the food by a user, and sparsity is introduced into the similarity matrix while the time sequence of the scoring data is considered, so that recommendation can be</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220104&amp;DB=EPODOC&amp;CC=CN&amp;NR=113888252A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76294</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220104&amp;DB=EPODOC&amp;CC=CN&amp;NR=113888252A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LU ZELUN</creatorcontrib><creatorcontrib>MAO YIJUN</creatorcontrib><creatorcontrib>GU WANRONG</creatorcontrib><creatorcontrib>HE HAOMING</creatorcontrib><creatorcontrib>ZHU YIXIN</creatorcontrib><creatorcontrib>GUO MEIPING</creatorcontrib><creatorcontrib>LIANG ZAOQING</creatorcontrib><creatorcontrib>XIONG YI</creatorcontrib><creatorcontrib>CHEN ZIMING</creatorcontrib><title>Recommendation method based on a food safety grade score value and food similarity of a user</title><description>The invention discloses a recommendation method based on a food safety grade score value and food similarity of a user. The recommendation method comprises the following steps: 1) obtaining score data of the user on food; 2) calculating the scoring weight of each piece of scoring data; 3) inputting the scoring data and the scoring weight into a machine learning model for parameter training; and 4) after the parameter training is completed, obtaining a food similarity matrix, and finally calculating and generating a food recommendation list of the user through the score data of the user and the food similarity matrix, so that food is recommended to the user. According to the method, a machine learning model is trained, a neighborhood-based collaborative filtering method is combined and used, a similarity matrix of food is learned from scoring data of the food by a user, and sparsity is introduced into the similarity matrix while the time sequence of the scoring data is considered, so that recommendation can be</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNy7EKwjAUheEsDqK-w_UBHNoiZJWiODmIo1CuzYkNNLklSQXf3gx9AKfDD99Zq-cdvXiPYDg7CeSRBzH04gRDpZmslE5skb_0jmxAqZcI-vA4gziYRTjvRo6uKLHlNifErVpZHhN2y27U_nJ-tNcDJumQJu4RkLv2VlWN1ro-1qfmH_MDYfQ7KQ</recordid><startdate>20220104</startdate><enddate>20220104</enddate><creator>LU ZELUN</creator><creator>MAO YIJUN</creator><creator>GU WANRONG</creator><creator>HE HAOMING</creator><creator>ZHU YIXIN</creator><creator>GUO MEIPING</creator><creator>LIANG ZAOQING</creator><creator>XIONG YI</creator><creator>CHEN ZIMING</creator><scope>EVB</scope></search><sort><creationdate>20220104</creationdate><title>Recommendation method based on a food safety grade score value and food similarity of a user</title><author>LU ZELUN ; MAO YIJUN ; GU WANRONG ; HE HAOMING ; ZHU YIXIN ; GUO MEIPING ; LIANG ZAOQING ; XIONG YI ; CHEN ZIMING</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN113888252A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>LU ZELUN</creatorcontrib><creatorcontrib>MAO YIJUN</creatorcontrib><creatorcontrib>GU WANRONG</creatorcontrib><creatorcontrib>HE HAOMING</creatorcontrib><creatorcontrib>ZHU YIXIN</creatorcontrib><creatorcontrib>GUO MEIPING</creatorcontrib><creatorcontrib>LIANG ZAOQING</creatorcontrib><creatorcontrib>XIONG YI</creatorcontrib><creatorcontrib>CHEN ZIMING</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LU ZELUN</au><au>MAO YIJUN</au><au>GU WANRONG</au><au>HE HAOMING</au><au>ZHU YIXIN</au><au>GUO MEIPING</au><au>LIANG ZAOQING</au><au>XIONG YI</au><au>CHEN ZIMING</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Recommendation method based on a food safety grade score value and food similarity of a user</title><date>2022-01-04</date><risdate>2022</risdate><abstract>The invention discloses a recommendation method based on a food safety grade score value and food similarity of a user. The recommendation method comprises the following steps: 1) obtaining score data of the user on food; 2) calculating the scoring weight of each piece of scoring data; 3) inputting the scoring data and the scoring weight into a machine learning model for parameter training; and 4) after the parameter training is completed, obtaining a food similarity matrix, and finally calculating and generating a food recommendation list of the user through the score data of the user and the food similarity matrix, so that food is recommended to the user. According to the method, a machine learning model is trained, a neighborhood-based collaborative filtering method is combined and used, a similarity matrix of food is learned from scoring data of the food by a user, and sparsity is introduced into the similarity matrix while the time sequence of the scoring data is considered, so that recommendation can be</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN113888252A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title Recommendation method based on a food safety grade score value and food similarity of a user
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T07%3A43%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LU%20ZELUN&rft.date=2022-01-04&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN113888252A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true