CircRNA and disease incidence relation prediction method based on graph attention mechanism

The invention discloses a circRNA and disease incidence relation prediction method based on a graph attention mechanism, and the method comprises the steps: constructing a prediction model based on the graph attention mechanism for a large number of unknown circRNA-disease incidence relations by usi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ZHENG CHUNHOU, NI JIANCHENG, SUN HANG, WANG YUTIAN, JI CUNMEI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator ZHENG CHUNHOU
NI JIANCHENG
SUN HANG
WANG YUTIAN
JI CUNMEI
description The invention discloses a circRNA and disease incidence relation prediction method based on a graph attention mechanism, and the method comprises the steps: constructing a prediction model based on the graph attention mechanism for a large number of unknown circRNA-disease incidence relations by using disease ontology data and known circRNA-disease incidenceinformation, and extracting accurate low-dimensional vector representation of circRNA and diseases, and designing a model based on a multilayer neural network to predict an unknown circRNA-disease incidence relation. According to the method, the circRNA related to the disease can be efficiently and reliably predicted through a calculation method, and the human and financial cost of biological verification is saved. 本发明公开了一种基于图注意力机制的circRNA与疾病关联关系预测方法,针对大量未知的circRNA-疾病关联关系,利用疾病本体数据和已知circRNA-疾病关联信息,构建基于图注意力机制的预测模型提取circRNA和疾病的准确的低维向量表示,并设计一种基于多层神经网络的模型预测未知的circRNA-疾病关联关系。本发明通过计算方法可以高效、可靠地预测与疾病相关的circRNA,节省生物验证的人力财力成本。
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN113871021A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN113871021A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN113871021A3</originalsourceid><addsrcrecordid>eNqNirEKwjAURbM4iPoPzw8QjB10LUFx6iBuDuWZXNsH7WtI8v9YpB_gdO7hnrV5OUn-0dTEGihIBmeQqJcA9aCEgYtMSjEhiP_NEaWfAr3nMtDsXeLYE5cCXX7fs0oet2b14SFjt3Bj9rfr090PiFOLHNlDUVrXWFtdzvZ4snX1T_MFNw07MA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>CircRNA and disease incidence relation prediction method based on graph attention mechanism</title><source>esp@cenet</source><creator>ZHENG CHUNHOU ; NI JIANCHENG ; SUN HANG ; WANG YUTIAN ; JI CUNMEI</creator><creatorcontrib>ZHENG CHUNHOU ; NI JIANCHENG ; SUN HANG ; WANG YUTIAN ; JI CUNMEI</creatorcontrib><description>The invention discloses a circRNA and disease incidence relation prediction method based on a graph attention mechanism, and the method comprises the steps: constructing a prediction model based on the graph attention mechanism for a large number of unknown circRNA-disease incidence relations by using disease ontology data and known circRNA-disease incidenceinformation, and extracting accurate low-dimensional vector representation of circRNA and diseases, and designing a model based on a multilayer neural network to predict an unknown circRNA-disease incidence relation. According to the method, the circRNA related to the disease can be efficiently and reliably predicted through a calculation method, and the human and financial cost of biological verification is saved. 本发明公开了一种基于图注意力机制的circRNA与疾病关联关系预测方法,针对大量未知的circRNA-疾病关联关系,利用疾病本体数据和已知circRNA-疾病关联信息,构建基于图注意力机制的预测模型提取circRNA和疾病的准确的低维向量表示,并设计一种基于多层神经网络的模型预测未知的circRNA-疾病关联关系。本发明通过计算方法可以高效、可靠地预测与疾病相关的circRNA,节省生物验证的人力财力成本。</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; HANDLING RECORD CARRIERS ; HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA ; INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20211231&amp;DB=EPODOC&amp;CC=CN&amp;NR=113871021A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76294</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20211231&amp;DB=EPODOC&amp;CC=CN&amp;NR=113871021A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHENG CHUNHOU</creatorcontrib><creatorcontrib>NI JIANCHENG</creatorcontrib><creatorcontrib>SUN HANG</creatorcontrib><creatorcontrib>WANG YUTIAN</creatorcontrib><creatorcontrib>JI CUNMEI</creatorcontrib><title>CircRNA and disease incidence relation prediction method based on graph attention mechanism</title><description>The invention discloses a circRNA and disease incidence relation prediction method based on a graph attention mechanism, and the method comprises the steps: constructing a prediction model based on the graph attention mechanism for a large number of unknown circRNA-disease incidence relations by using disease ontology data and known circRNA-disease incidenceinformation, and extracting accurate low-dimensional vector representation of circRNA and diseases, and designing a model based on a multilayer neural network to predict an unknown circRNA-disease incidence relation. According to the method, the circRNA related to the disease can be efficiently and reliably predicted through a calculation method, and the human and financial cost of biological verification is saved. 本发明公开了一种基于图注意力机制的circRNA与疾病关联关系预测方法,针对大量未知的circRNA-疾病关联关系,利用疾病本体数据和已知circRNA-疾病关联信息,构建基于图注意力机制的预测模型提取circRNA和疾病的准确的低维向量表示,并设计一种基于多层神经网络的模型预测未知的circRNA-疾病关联关系。本发明通过计算方法可以高效、可靠地预测与疾病相关的circRNA,节省生物验证的人力财力成本。</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA</subject><subject>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNirEKwjAURbM4iPoPzw8QjB10LUFx6iBuDuWZXNsH7WtI8v9YpB_gdO7hnrV5OUn-0dTEGihIBmeQqJcA9aCEgYtMSjEhiP_NEaWfAr3nMtDsXeLYE5cCXX7fs0oet2b14SFjt3Bj9rfr090PiFOLHNlDUVrXWFtdzvZ4snX1T_MFNw07MA</recordid><startdate>20211231</startdate><enddate>20211231</enddate><creator>ZHENG CHUNHOU</creator><creator>NI JIANCHENG</creator><creator>SUN HANG</creator><creator>WANG YUTIAN</creator><creator>JI CUNMEI</creator><scope>EVB</scope></search><sort><creationdate>20211231</creationdate><title>CircRNA and disease incidence relation prediction method based on graph attention mechanism</title><author>ZHENG CHUNHOU ; NI JIANCHENG ; SUN HANG ; WANG YUTIAN ; JI CUNMEI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN113871021A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA</topic><topic>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHENG CHUNHOU</creatorcontrib><creatorcontrib>NI JIANCHENG</creatorcontrib><creatorcontrib>SUN HANG</creatorcontrib><creatorcontrib>WANG YUTIAN</creatorcontrib><creatorcontrib>JI CUNMEI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHENG CHUNHOU</au><au>NI JIANCHENG</au><au>SUN HANG</au><au>WANG YUTIAN</au><au>JI CUNMEI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>CircRNA and disease incidence relation prediction method based on graph attention mechanism</title><date>2021-12-31</date><risdate>2021</risdate><abstract>The invention discloses a circRNA and disease incidence relation prediction method based on a graph attention mechanism, and the method comprises the steps: constructing a prediction model based on the graph attention mechanism for a large number of unknown circRNA-disease incidence relations by using disease ontology data and known circRNA-disease incidenceinformation, and extracting accurate low-dimensional vector representation of circRNA and diseases, and designing a model based on a multilayer neural network to predict an unknown circRNA-disease incidence relation. According to the method, the circRNA related to the disease can be efficiently and reliably predicted through a calculation method, and the human and financial cost of biological verification is saved. 本发明公开了一种基于图注意力机制的circRNA与疾病关联关系预测方法,针对大量未知的circRNA-疾病关联关系,利用疾病本体数据和已知circRNA-疾病关联信息,构建基于图注意力机制的预测模型提取circRNA和疾病的准确的低维向量表示,并设计一种基于多层神经网络的模型预测未知的circRNA-疾病关联关系。本发明通过计算方法可以高效、可靠地预测与疾病相关的circRNA,节省生物验证的人力财力成本。</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN113871021A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
HANDLING RECORD CARRIERS
HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA
INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title CircRNA and disease incidence relation prediction method based on graph attention mechanism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T08%3A42%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHENG%20CHUNHOU&rft.date=2021-12-31&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN113871021A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true