Anti-fact sample generation method, model adjustment method, equipment and medium

The embodiment of the invention discloses an anti-fact sample generation method, a model adjustment method, equipment and a medium. The method comprises the following steps: constructing a mirror image network model symmetrical to an original machine learning network model according to the original...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: XIA ZHENGXUN, YANG XUESONG, JIN KEQIAO
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator XIA ZHENGXUN
YANG XUESONG
JIN KEQIAO
description The embodiment of the invention discloses an anti-fact sample generation method, a model adjustment method, equipment and a medium. The method comprises the following steps: constructing a mirror image network model symmetrical to an original machine learning network model according to the original machine learning network model, and generating an anti-fact network model; performing a model training test on the original machine learning network model through the test sample set, and obtaining a test result; and taking a target sample which is wrongly identified in the test result as the input of the anti-fact network model to obtain an anti-fact sample output by the anti-fact network model. The test result of the test stage can be automatically fed back to the learning stage, the anti-fact sample can be generated to expand the learning sample, the problem of small samples is solved, then model deviation correction can be automatically achieved under the condition of not depending on manual participation, the
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN113869492A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN113869492A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN113869492A3</originalsourceid><addsrcrecordid>eNrjZAh0zCvJ1E1LTC5RKE7MLchJVUhPzUstSizJzM9TyE0tychP0VHIzU9JzVFITMkqLS7JTc0rgUukFpZmFoBFEvNSgKIpmaW5PAysaYk5xam8UJqbQdHNNcTZQze1ID8-tbggMRloQUm8s5-hobGFmaWJpZGjMTFqAMd_N6k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Anti-fact sample generation method, model adjustment method, equipment and medium</title><source>esp@cenet</source><creator>XIA ZHENGXUN ; YANG XUESONG ; JIN KEQIAO</creator><creatorcontrib>XIA ZHENGXUN ; YANG XUESONG ; JIN KEQIAO</creatorcontrib><description>The embodiment of the invention discloses an anti-fact sample generation method, a model adjustment method, equipment and a medium. The method comprises the following steps: constructing a mirror image network model symmetrical to an original machine learning network model according to the original machine learning network model, and generating an anti-fact network model; performing a model training test on the original machine learning network model through the test sample set, and obtaining a test result; and taking a target sample which is wrongly identified in the test result as the input of the anti-fact network model to obtain an anti-fact sample output by the anti-fact network model. The test result of the test stage can be automatically fed back to the learning stage, the anti-fact sample can be generated to expand the learning sample, the problem of small samples is solved, then model deviation correction can be automatically achieved under the condition of not depending on manual participation, the</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20211231&amp;DB=EPODOC&amp;CC=CN&amp;NR=113869492A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20211231&amp;DB=EPODOC&amp;CC=CN&amp;NR=113869492A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>XIA ZHENGXUN</creatorcontrib><creatorcontrib>YANG XUESONG</creatorcontrib><creatorcontrib>JIN KEQIAO</creatorcontrib><title>Anti-fact sample generation method, model adjustment method, equipment and medium</title><description>The embodiment of the invention discloses an anti-fact sample generation method, a model adjustment method, equipment and a medium. The method comprises the following steps: constructing a mirror image network model symmetrical to an original machine learning network model according to the original machine learning network model, and generating an anti-fact network model; performing a model training test on the original machine learning network model through the test sample set, and obtaining a test result; and taking a target sample which is wrongly identified in the test result as the input of the anti-fact network model to obtain an anti-fact sample output by the anti-fact network model. The test result of the test stage can be automatically fed back to the learning stage, the anti-fact sample can be generated to expand the learning sample, the problem of small samples is solved, then model deviation correction can be automatically achieved under the condition of not depending on manual participation, the</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZAh0zCvJ1E1LTC5RKE7MLchJVUhPzUstSizJzM9TyE0tychP0VHIzU9JzVFITMkqLS7JTc0rgUukFpZmFoBFEvNSgKIpmaW5PAysaYk5xam8UJqbQdHNNcTZQze1ID8-tbggMRloQUm8s5-hobGFmaWJpZGjMTFqAMd_N6k</recordid><startdate>20211231</startdate><enddate>20211231</enddate><creator>XIA ZHENGXUN</creator><creator>YANG XUESONG</creator><creator>JIN KEQIAO</creator><scope>EVB</scope></search><sort><creationdate>20211231</creationdate><title>Anti-fact sample generation method, model adjustment method, equipment and medium</title><author>XIA ZHENGXUN ; YANG XUESONG ; JIN KEQIAO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN113869492A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>XIA ZHENGXUN</creatorcontrib><creatorcontrib>YANG XUESONG</creatorcontrib><creatorcontrib>JIN KEQIAO</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>XIA ZHENGXUN</au><au>YANG XUESONG</au><au>JIN KEQIAO</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Anti-fact sample generation method, model adjustment method, equipment and medium</title><date>2021-12-31</date><risdate>2021</risdate><abstract>The embodiment of the invention discloses an anti-fact sample generation method, a model adjustment method, equipment and a medium. The method comprises the following steps: constructing a mirror image network model symmetrical to an original machine learning network model according to the original machine learning network model, and generating an anti-fact network model; performing a model training test on the original machine learning network model through the test sample set, and obtaining a test result; and taking a target sample which is wrongly identified in the test result as the input of the anti-fact network model to obtain an anti-fact sample output by the anti-fact network model. The test result of the test stage can be automatically fed back to the learning stage, the anti-fact sample can be generated to expand the learning sample, the problem of small samples is solved, then model deviation correction can be automatically achieved under the condition of not depending on manual participation, the</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN113869492A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title Anti-fact sample generation method, model adjustment method, equipment and medium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T23%3A05%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=XIA%20ZHENGXUN&rft.date=2021-12-31&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN113869492A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true