Short-term load probability density prediction method, device and system based on quantile regression

The invention discloses a short-term load probability density prediction method, device and system based on quantile regression, and the method comprises the steps: obtaining a DL-LSTM-A deep network model, wherein the DL-LSTM-A deep network model comprises a plurality of double-layer LSTM network c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LYU PENGPENG, TAO XIAOFENG, ZHOU YANG, YANG XUELIANG, DENG LIANGZHU, LIU NIEXUAN, HUANG CHAO, XIONG XIA, LU YANG, SUN MENG, HUANG FUXING, LI YUANHANG, ZHANG QUNXING
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LYU PENGPENG
TAO XIAOFENG
ZHOU YANG
YANG XUELIANG
DENG LIANGZHU
LIU NIEXUAN
HUANG CHAO
XIONG XIA
LU YANG
SUN MENG
HUANG FUXING
LI YUANHANG
ZHANG QUNXING
description The invention discloses a short-term load probability density prediction method, device and system based on quantile regression, and the method comprises the steps: obtaining a DL-LSTM-A deep network model, wherein the DL-LSTM-A deep network model comprises a plurality of double-layer LSTM network cells and an attention mechanism module, the output end of each double-layer LSTM network cell is connected with the attention mechanism module, the attention mechanism module performs weighted summation on the output of each double-layer LSTM network cell, and each double-layer LSTM network cell comprises two LSTM cells which are connected in sequence; carrying out training by using the training data to obtain to-be-optimized parameters in the DL-LSTM-A network, and obtaining an optimized DL-LSTM-A deep network model; inputting the obtained influence factors of the power load consumption into the optimized DL-LSTM-A deep network model to obtain the quantile; and processing the quantile by adopting a non-parametric
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN113868938A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN113868938A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN113868938A3</originalsourceid><addsrcrecordid>eNqNi7EKwkAQBdNYiPoPa2-KEJBYhqBY2WgfNrmnObjcnberkL83gh9gNcXMLDNch5A0V6SRXGBDMYWOO-usTmTg5cuYYGyvNngaoUMwu1m9bQ9ib0gmUYzUscDQnDxf7NU6UMIjQWTe1tnizk6w-XGVbU_HW3POEUMLidzDQ9vmUhRlta8OZVWX_zQfaVk_xg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Short-term load probability density prediction method, device and system based on quantile regression</title><source>esp@cenet</source><creator>LYU PENGPENG ; TAO XIAOFENG ; ZHOU YANG ; YANG XUELIANG ; DENG LIANGZHU ; LIU NIEXUAN ; HUANG CHAO ; XIONG XIA ; LU YANG ; SUN MENG ; HUANG FUXING ; LI YUANHANG ; ZHANG QUNXING</creator><creatorcontrib>LYU PENGPENG ; TAO XIAOFENG ; ZHOU YANG ; YANG XUELIANG ; DENG LIANGZHU ; LIU NIEXUAN ; HUANG CHAO ; XIONG XIA ; LU YANG ; SUN MENG ; HUANG FUXING ; LI YUANHANG ; ZHANG QUNXING</creatorcontrib><description>The invention discloses a short-term load probability density prediction method, device and system based on quantile regression, and the method comprises the steps: obtaining a DL-LSTM-A deep network model, wherein the DL-LSTM-A deep network model comprises a plurality of double-layer LSTM network cells and an attention mechanism module, the output end of each double-layer LSTM network cell is connected with the attention mechanism module, the attention mechanism module performs weighted summation on the output of each double-layer LSTM network cell, and each double-layer LSTM network cell comprises two LSTM cells which are connected in sequence; carrying out training by using the training data to obtain to-be-optimized parameters in the DL-LSTM-A network, and obtaining an optimized DL-LSTM-A deep network model; inputting the obtained influence factors of the power load consumption into the optimized DL-LSTM-A deep network model to obtain the quantile; and processing the quantile by adopting a non-parametric</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20211231&amp;DB=EPODOC&amp;CC=CN&amp;NR=113868938A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20211231&amp;DB=EPODOC&amp;CC=CN&amp;NR=113868938A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LYU PENGPENG</creatorcontrib><creatorcontrib>TAO XIAOFENG</creatorcontrib><creatorcontrib>ZHOU YANG</creatorcontrib><creatorcontrib>YANG XUELIANG</creatorcontrib><creatorcontrib>DENG LIANGZHU</creatorcontrib><creatorcontrib>LIU NIEXUAN</creatorcontrib><creatorcontrib>HUANG CHAO</creatorcontrib><creatorcontrib>XIONG XIA</creatorcontrib><creatorcontrib>LU YANG</creatorcontrib><creatorcontrib>SUN MENG</creatorcontrib><creatorcontrib>HUANG FUXING</creatorcontrib><creatorcontrib>LI YUANHANG</creatorcontrib><creatorcontrib>ZHANG QUNXING</creatorcontrib><title>Short-term load probability density prediction method, device and system based on quantile regression</title><description>The invention discloses a short-term load probability density prediction method, device and system based on quantile regression, and the method comprises the steps: obtaining a DL-LSTM-A deep network model, wherein the DL-LSTM-A deep network model comprises a plurality of double-layer LSTM network cells and an attention mechanism module, the output end of each double-layer LSTM network cell is connected with the attention mechanism module, the attention mechanism module performs weighted summation on the output of each double-layer LSTM network cell, and each double-layer LSTM network cell comprises two LSTM cells which are connected in sequence; carrying out training by using the training data to obtain to-be-optimized parameters in the DL-LSTM-A network, and obtaining an optimized DL-LSTM-A deep network model; inputting the obtained influence factors of the power load consumption into the optimized DL-LSTM-A deep network model to obtain the quantile; and processing the quantile by adopting a non-parametric</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNi7EKwkAQBdNYiPoPa2-KEJBYhqBY2WgfNrmnObjcnberkL83gh9gNcXMLDNch5A0V6SRXGBDMYWOO-usTmTg5cuYYGyvNngaoUMwu1m9bQ9ib0gmUYzUscDQnDxf7NU6UMIjQWTe1tnizk6w-XGVbU_HW3POEUMLidzDQ9vmUhRlta8OZVWX_zQfaVk_xg</recordid><startdate>20211231</startdate><enddate>20211231</enddate><creator>LYU PENGPENG</creator><creator>TAO XIAOFENG</creator><creator>ZHOU YANG</creator><creator>YANG XUELIANG</creator><creator>DENG LIANGZHU</creator><creator>LIU NIEXUAN</creator><creator>HUANG CHAO</creator><creator>XIONG XIA</creator><creator>LU YANG</creator><creator>SUN MENG</creator><creator>HUANG FUXING</creator><creator>LI YUANHANG</creator><creator>ZHANG QUNXING</creator><scope>EVB</scope></search><sort><creationdate>20211231</creationdate><title>Short-term load probability density prediction method, device and system based on quantile regression</title><author>LYU PENGPENG ; TAO XIAOFENG ; ZHOU YANG ; YANG XUELIANG ; DENG LIANGZHU ; LIU NIEXUAN ; HUANG CHAO ; XIONG XIA ; LU YANG ; SUN MENG ; HUANG FUXING ; LI YUANHANG ; ZHANG QUNXING</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN113868938A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>LYU PENGPENG</creatorcontrib><creatorcontrib>TAO XIAOFENG</creatorcontrib><creatorcontrib>ZHOU YANG</creatorcontrib><creatorcontrib>YANG XUELIANG</creatorcontrib><creatorcontrib>DENG LIANGZHU</creatorcontrib><creatorcontrib>LIU NIEXUAN</creatorcontrib><creatorcontrib>HUANG CHAO</creatorcontrib><creatorcontrib>XIONG XIA</creatorcontrib><creatorcontrib>LU YANG</creatorcontrib><creatorcontrib>SUN MENG</creatorcontrib><creatorcontrib>HUANG FUXING</creatorcontrib><creatorcontrib>LI YUANHANG</creatorcontrib><creatorcontrib>ZHANG QUNXING</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LYU PENGPENG</au><au>TAO XIAOFENG</au><au>ZHOU YANG</au><au>YANG XUELIANG</au><au>DENG LIANGZHU</au><au>LIU NIEXUAN</au><au>HUANG CHAO</au><au>XIONG XIA</au><au>LU YANG</au><au>SUN MENG</au><au>HUANG FUXING</au><au>LI YUANHANG</au><au>ZHANG QUNXING</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Short-term load probability density prediction method, device and system based on quantile regression</title><date>2021-12-31</date><risdate>2021</risdate><abstract>The invention discloses a short-term load probability density prediction method, device and system based on quantile regression, and the method comprises the steps: obtaining a DL-LSTM-A deep network model, wherein the DL-LSTM-A deep network model comprises a plurality of double-layer LSTM network cells and an attention mechanism module, the output end of each double-layer LSTM network cell is connected with the attention mechanism module, the attention mechanism module performs weighted summation on the output of each double-layer LSTM network cell, and each double-layer LSTM network cell comprises two LSTM cells which are connected in sequence; carrying out training by using the training data to obtain to-be-optimized parameters in the DL-LSTM-A network, and obtaining an optimized DL-LSTM-A deep network model; inputting the obtained influence factors of the power load consumption into the optimized DL-LSTM-A deep network model to obtain the quantile; and processing the quantile by adopting a non-parametric</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN113868938A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title Short-term load probability density prediction method, device and system based on quantile regression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T06%3A50%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LYU%20PENGPENG&rft.date=2021-12-31&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN113868938A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true