Short-term load probability density prediction method, device and system based on quantile regression
The invention discloses a short-term load probability density prediction method, device and system based on quantile regression, and the method comprises the steps: obtaining a DL-LSTM-A deep network model, wherein the DL-LSTM-A deep network model comprises a plurality of double-layer LSTM network c...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | LYU PENGPENG TAO XIAOFENG ZHOU YANG YANG XUELIANG DENG LIANGZHU LIU NIEXUAN HUANG CHAO XIONG XIA LU YANG SUN MENG HUANG FUXING LI YUANHANG ZHANG QUNXING |
description | The invention discloses a short-term load probability density prediction method, device and system based on quantile regression, and the method comprises the steps: obtaining a DL-LSTM-A deep network model, wherein the DL-LSTM-A deep network model comprises a plurality of double-layer LSTM network cells and an attention mechanism module, the output end of each double-layer LSTM network cell is connected with the attention mechanism module, the attention mechanism module performs weighted summation on the output of each double-layer LSTM network cell, and each double-layer LSTM network cell comprises two LSTM cells which are connected in sequence; carrying out training by using the training data to obtain to-be-optimized parameters in the DL-LSTM-A network, and obtaining an optimized DL-LSTM-A deep network model; inputting the obtained influence factors of the power load consumption into the optimized DL-LSTM-A deep network model to obtain the quantile; and processing the quantile by adopting a non-parametric |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN113868938A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN113868938A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN113868938A3</originalsourceid><addsrcrecordid>eNqNi7EKwkAQBdNYiPoPa2-KEJBYhqBY2WgfNrmnObjcnberkL83gh9gNcXMLDNch5A0V6SRXGBDMYWOO-usTmTg5cuYYGyvNngaoUMwu1m9bQ9ib0gmUYzUscDQnDxf7NU6UMIjQWTe1tnizk6w-XGVbU_HW3POEUMLidzDQ9vmUhRlta8OZVWX_zQfaVk_xg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Short-term load probability density prediction method, device and system based on quantile regression</title><source>esp@cenet</source><creator>LYU PENGPENG ; TAO XIAOFENG ; ZHOU YANG ; YANG XUELIANG ; DENG LIANGZHU ; LIU NIEXUAN ; HUANG CHAO ; XIONG XIA ; LU YANG ; SUN MENG ; HUANG FUXING ; LI YUANHANG ; ZHANG QUNXING</creator><creatorcontrib>LYU PENGPENG ; TAO XIAOFENG ; ZHOU YANG ; YANG XUELIANG ; DENG LIANGZHU ; LIU NIEXUAN ; HUANG CHAO ; XIONG XIA ; LU YANG ; SUN MENG ; HUANG FUXING ; LI YUANHANG ; ZHANG QUNXING</creatorcontrib><description>The invention discloses a short-term load probability density prediction method, device and system based on quantile regression, and the method comprises the steps: obtaining a DL-LSTM-A deep network model, wherein the DL-LSTM-A deep network model comprises a plurality of double-layer LSTM network cells and an attention mechanism module, the output end of each double-layer LSTM network cell is connected with the attention mechanism module, the attention mechanism module performs weighted summation on the output of each double-layer LSTM network cell, and each double-layer LSTM network cell comprises two LSTM cells which are connected in sequence; carrying out training by using the training data to obtain to-be-optimized parameters in the DL-LSTM-A network, and obtaining an optimized DL-LSTM-A deep network model; inputting the obtained influence factors of the power load consumption into the optimized DL-LSTM-A deep network model to obtain the quantile; and processing the quantile by adopting a non-parametric</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20211231&DB=EPODOC&CC=CN&NR=113868938A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20211231&DB=EPODOC&CC=CN&NR=113868938A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LYU PENGPENG</creatorcontrib><creatorcontrib>TAO XIAOFENG</creatorcontrib><creatorcontrib>ZHOU YANG</creatorcontrib><creatorcontrib>YANG XUELIANG</creatorcontrib><creatorcontrib>DENG LIANGZHU</creatorcontrib><creatorcontrib>LIU NIEXUAN</creatorcontrib><creatorcontrib>HUANG CHAO</creatorcontrib><creatorcontrib>XIONG XIA</creatorcontrib><creatorcontrib>LU YANG</creatorcontrib><creatorcontrib>SUN MENG</creatorcontrib><creatorcontrib>HUANG FUXING</creatorcontrib><creatorcontrib>LI YUANHANG</creatorcontrib><creatorcontrib>ZHANG QUNXING</creatorcontrib><title>Short-term load probability density prediction method, device and system based on quantile regression</title><description>The invention discloses a short-term load probability density prediction method, device and system based on quantile regression, and the method comprises the steps: obtaining a DL-LSTM-A deep network model, wherein the DL-LSTM-A deep network model comprises a plurality of double-layer LSTM network cells and an attention mechanism module, the output end of each double-layer LSTM network cell is connected with the attention mechanism module, the attention mechanism module performs weighted summation on the output of each double-layer LSTM network cell, and each double-layer LSTM network cell comprises two LSTM cells which are connected in sequence; carrying out training by using the training data to obtain to-be-optimized parameters in the DL-LSTM-A network, and obtaining an optimized DL-LSTM-A deep network model; inputting the obtained influence factors of the power load consumption into the optimized DL-LSTM-A deep network model to obtain the quantile; and processing the quantile by adopting a non-parametric</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNi7EKwkAQBdNYiPoPa2-KEJBYhqBY2WgfNrmnObjcnberkL83gh9gNcXMLDNch5A0V6SRXGBDMYWOO-usTmTg5cuYYGyvNngaoUMwu1m9bQ9ib0gmUYzUscDQnDxf7NU6UMIjQWTe1tnizk6w-XGVbU_HW3POEUMLidzDQ9vmUhRlta8OZVWX_zQfaVk_xg</recordid><startdate>20211231</startdate><enddate>20211231</enddate><creator>LYU PENGPENG</creator><creator>TAO XIAOFENG</creator><creator>ZHOU YANG</creator><creator>YANG XUELIANG</creator><creator>DENG LIANGZHU</creator><creator>LIU NIEXUAN</creator><creator>HUANG CHAO</creator><creator>XIONG XIA</creator><creator>LU YANG</creator><creator>SUN MENG</creator><creator>HUANG FUXING</creator><creator>LI YUANHANG</creator><creator>ZHANG QUNXING</creator><scope>EVB</scope></search><sort><creationdate>20211231</creationdate><title>Short-term load probability density prediction method, device and system based on quantile regression</title><author>LYU PENGPENG ; TAO XIAOFENG ; ZHOU YANG ; YANG XUELIANG ; DENG LIANGZHU ; LIU NIEXUAN ; HUANG CHAO ; XIONG XIA ; LU YANG ; SUN MENG ; HUANG FUXING ; LI YUANHANG ; ZHANG QUNXING</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN113868938A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>LYU PENGPENG</creatorcontrib><creatorcontrib>TAO XIAOFENG</creatorcontrib><creatorcontrib>ZHOU YANG</creatorcontrib><creatorcontrib>YANG XUELIANG</creatorcontrib><creatorcontrib>DENG LIANGZHU</creatorcontrib><creatorcontrib>LIU NIEXUAN</creatorcontrib><creatorcontrib>HUANG CHAO</creatorcontrib><creatorcontrib>XIONG XIA</creatorcontrib><creatorcontrib>LU YANG</creatorcontrib><creatorcontrib>SUN MENG</creatorcontrib><creatorcontrib>HUANG FUXING</creatorcontrib><creatorcontrib>LI YUANHANG</creatorcontrib><creatorcontrib>ZHANG QUNXING</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LYU PENGPENG</au><au>TAO XIAOFENG</au><au>ZHOU YANG</au><au>YANG XUELIANG</au><au>DENG LIANGZHU</au><au>LIU NIEXUAN</au><au>HUANG CHAO</au><au>XIONG XIA</au><au>LU YANG</au><au>SUN MENG</au><au>HUANG FUXING</au><au>LI YUANHANG</au><au>ZHANG QUNXING</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Short-term load probability density prediction method, device and system based on quantile regression</title><date>2021-12-31</date><risdate>2021</risdate><abstract>The invention discloses a short-term load probability density prediction method, device and system based on quantile regression, and the method comprises the steps: obtaining a DL-LSTM-A deep network model, wherein the DL-LSTM-A deep network model comprises a plurality of double-layer LSTM network cells and an attention mechanism module, the output end of each double-layer LSTM network cell is connected with the attention mechanism module, the attention mechanism module performs weighted summation on the output of each double-layer LSTM network cell, and each double-layer LSTM network cell comprises two LSTM cells which are connected in sequence; carrying out training by using the training data to obtain to-be-optimized parameters in the DL-LSTM-A network, and obtaining an optimized DL-LSTM-A deep network model; inputting the obtained influence factors of the power load consumption into the optimized DL-LSTM-A deep network model to obtain the quantile; and processing the quantile by adopting a non-parametric</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN113868938A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ELECTRIC DIGITAL DATA PROCESSING PHYSICS SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR |
title | Short-term load probability density prediction method, device and system based on quantile regression |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T06%3A50%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LYU%20PENGPENG&rft.date=2021-12-31&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN113868938A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |