Deep learning-based bridge acceleration monitoring data anomaly detection method, system and device

The invention discloses a deep learning-based bridge acceleration monitoring data anomaly detection method, system and device. The method comprises the following steps of obtaining real bridge acceleration time history data; processing the acquired acceleration time history data to obtain a 9-dimens...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: DING YOULIANG, ZHAO DACHENG, CHEN BIN, HE QILONG, JIAN ZHENZHEN, LIU XINGWANG, DAI XINJUN, MEI DAPENG, WAN CHUNFENG, JIA WENWEN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator DING YOULIANG
ZHAO DACHENG
CHEN BIN
HE QILONG
JIAN ZHENZHEN
LIU XINGWANG
DAI XINJUN
MEI DAPENG
WAN CHUNFENG
JIA WENWEN
description The invention discloses a deep learning-based bridge acceleration monitoring data anomaly detection method, system and device. The method comprises the following steps of obtaining real bridge acceleration time history data; processing the acquired acceleration time history data to obtain a 9-dimensional acceleration characteristic matrix; inputting the 9-dimensional acceleration characteristic matrix into a pre-trained LSTM neural network model; and determining the abnormal type of the bridge acceleration monitoring data according to the output of the LSTM neural network model. The method can effectively avoid a large amount of manual intervention required by a traditional threshold setting method, can intelligently recognize and detect the abnormality of the bridge acceleration monitoring data, saves manpower, and is high in detection efficiency. 本发明公开了一种基于深度学习的桥梁加速度监测数据异常检测方法、系统和装置,包括以下步骤:获取实桥加速度时程数据;对获取到的加速度时程数据进行处理,得到9维加速度特征矩阵;将所述9维加速度特征矩阵输入预先训练的LSTM神经网络模型;根据所述LSTM神经网络模型的输出,确定桥梁加速度监测数据异常类型。本发明可以有效避免传统设置阈
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN113866455A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN113866455A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN113866455A3</originalsourceid><addsrcrecordid>eNqNyrEKwjAURuEsDqK-w3W3Q6ktrlIVJyf3cpv8toE0KclF6Nsb0AdwOsP51kpfgJkcOHrrh6LnBEN9tGYAsdZwiCw2eJqCtxJiRmRYmNiHid1CBgL9FZAxmAOlJQmmDEyeb6uxVasXu4Tdrxu1v12f7b3AHDqkmTU8pGsfZVmdmuZY1-fqH_MBolc-jg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Deep learning-based bridge acceleration monitoring data anomaly detection method, system and device</title><source>esp@cenet</source><creator>DING YOULIANG ; ZHAO DACHENG ; CHEN BIN ; HE QILONG ; JIAN ZHENZHEN ; LIU XINGWANG ; DAI XINJUN ; MEI DAPENG ; WAN CHUNFENG ; JIA WENWEN</creator><creatorcontrib>DING YOULIANG ; ZHAO DACHENG ; CHEN BIN ; HE QILONG ; JIAN ZHENZHEN ; LIU XINGWANG ; DAI XINJUN ; MEI DAPENG ; WAN CHUNFENG ; JIA WENWEN</creatorcontrib><description>The invention discloses a deep learning-based bridge acceleration monitoring data anomaly detection method, system and device. The method comprises the following steps of obtaining real bridge acceleration time history data; processing the acquired acceleration time history data to obtain a 9-dimensional acceleration characteristic matrix; inputting the 9-dimensional acceleration characteristic matrix into a pre-trained LSTM neural network model; and determining the abnormal type of the bridge acceleration monitoring data according to the output of the LSTM neural network model. The method can effectively avoid a large amount of manual intervention required by a traditional threshold setting method, can intelligently recognize and detect the abnormality of the bridge acceleration monitoring data, saves manpower, and is high in detection efficiency. 本发明公开了一种基于深度学习的桥梁加速度监测数据异常检测方法、系统和装置,包括以下步骤:获取实桥加速度时程数据;对获取到的加速度时程数据进行处理,得到9维加速度特征矩阵;将所述9维加速度特征矩阵输入预先训练的LSTM神经网络模型;根据所述LSTM神经网络模型的输出,确定桥梁加速度监测数据异常类型。本发明可以有效避免传统设置阈</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT ; MEASURING ; MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION,OR SHOCK ; PHYSICS ; TESTING ; TESTING STATIC OR DYNAMIC BALANCE OF MACHINES ORSTRUCTURES ; TESTING STRUCTURES OR APPARATUS NOT OTHERWISE PROVIDED FOR</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20211231&amp;DB=EPODOC&amp;CC=CN&amp;NR=113866455A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20211231&amp;DB=EPODOC&amp;CC=CN&amp;NR=113866455A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>DING YOULIANG</creatorcontrib><creatorcontrib>ZHAO DACHENG</creatorcontrib><creatorcontrib>CHEN BIN</creatorcontrib><creatorcontrib>HE QILONG</creatorcontrib><creatorcontrib>JIAN ZHENZHEN</creatorcontrib><creatorcontrib>LIU XINGWANG</creatorcontrib><creatorcontrib>DAI XINJUN</creatorcontrib><creatorcontrib>MEI DAPENG</creatorcontrib><creatorcontrib>WAN CHUNFENG</creatorcontrib><creatorcontrib>JIA WENWEN</creatorcontrib><title>Deep learning-based bridge acceleration monitoring data anomaly detection method, system and device</title><description>The invention discloses a deep learning-based bridge acceleration monitoring data anomaly detection method, system and device. The method comprises the following steps of obtaining real bridge acceleration time history data; processing the acquired acceleration time history data to obtain a 9-dimensional acceleration characteristic matrix; inputting the 9-dimensional acceleration characteristic matrix into a pre-trained LSTM neural network model; and determining the abnormal type of the bridge acceleration monitoring data according to the output of the LSTM neural network model. The method can effectively avoid a large amount of manual intervention required by a traditional threshold setting method, can intelligently recognize and detect the abnormality of the bridge acceleration monitoring data, saves manpower, and is high in detection efficiency. 本发明公开了一种基于深度学习的桥梁加速度监测数据异常检测方法、系统和装置,包括以下步骤:获取实桥加速度时程数据;对获取到的加速度时程数据进行处理,得到9维加速度特征矩阵;将所述9维加速度特征矩阵输入预先训练的LSTM神经网络模型;根据所述LSTM神经网络模型的输出,确定桥梁加速度监测数据异常类型。本发明可以有效避免传统设置阈</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT</subject><subject>MEASURING</subject><subject>MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION,OR SHOCK</subject><subject>PHYSICS</subject><subject>TESTING</subject><subject>TESTING STATIC OR DYNAMIC BALANCE OF MACHINES ORSTRUCTURES</subject><subject>TESTING STRUCTURES OR APPARATUS NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyrEKwjAURuEsDqK-w3W3Q6ktrlIVJyf3cpv8toE0KclF6Nsb0AdwOsP51kpfgJkcOHrrh6LnBEN9tGYAsdZwiCw2eJqCtxJiRmRYmNiHid1CBgL9FZAxmAOlJQmmDEyeb6uxVasXu4Tdrxu1v12f7b3AHDqkmTU8pGsfZVmdmuZY1-fqH_MBolc-jg</recordid><startdate>20211231</startdate><enddate>20211231</enddate><creator>DING YOULIANG</creator><creator>ZHAO DACHENG</creator><creator>CHEN BIN</creator><creator>HE QILONG</creator><creator>JIAN ZHENZHEN</creator><creator>LIU XINGWANG</creator><creator>DAI XINJUN</creator><creator>MEI DAPENG</creator><creator>WAN CHUNFENG</creator><creator>JIA WENWEN</creator><scope>EVB</scope></search><sort><creationdate>20211231</creationdate><title>Deep learning-based bridge acceleration monitoring data anomaly detection method, system and device</title><author>DING YOULIANG ; ZHAO DACHENG ; CHEN BIN ; HE QILONG ; JIAN ZHENZHEN ; LIU XINGWANG ; DAI XINJUN ; MEI DAPENG ; WAN CHUNFENG ; JIA WENWEN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN113866455A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT</topic><topic>MEASURING</topic><topic>MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION,OR SHOCK</topic><topic>PHYSICS</topic><topic>TESTING</topic><topic>TESTING STATIC OR DYNAMIC BALANCE OF MACHINES ORSTRUCTURES</topic><topic>TESTING STRUCTURES OR APPARATUS NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>DING YOULIANG</creatorcontrib><creatorcontrib>ZHAO DACHENG</creatorcontrib><creatorcontrib>CHEN BIN</creatorcontrib><creatorcontrib>HE QILONG</creatorcontrib><creatorcontrib>JIAN ZHENZHEN</creatorcontrib><creatorcontrib>LIU XINGWANG</creatorcontrib><creatorcontrib>DAI XINJUN</creatorcontrib><creatorcontrib>MEI DAPENG</creatorcontrib><creatorcontrib>WAN CHUNFENG</creatorcontrib><creatorcontrib>JIA WENWEN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>DING YOULIANG</au><au>ZHAO DACHENG</au><au>CHEN BIN</au><au>HE QILONG</au><au>JIAN ZHENZHEN</au><au>LIU XINGWANG</au><au>DAI XINJUN</au><au>MEI DAPENG</au><au>WAN CHUNFENG</au><au>JIA WENWEN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Deep learning-based bridge acceleration monitoring data anomaly detection method, system and device</title><date>2021-12-31</date><risdate>2021</risdate><abstract>The invention discloses a deep learning-based bridge acceleration monitoring data anomaly detection method, system and device. The method comprises the following steps of obtaining real bridge acceleration time history data; processing the acquired acceleration time history data to obtain a 9-dimensional acceleration characteristic matrix; inputting the 9-dimensional acceleration characteristic matrix into a pre-trained LSTM neural network model; and determining the abnormal type of the bridge acceleration monitoring data according to the output of the LSTM neural network model. The method can effectively avoid a large amount of manual intervention required by a traditional threshold setting method, can intelligently recognize and detect the abnormality of the bridge acceleration monitoring data, saves manpower, and is high in detection efficiency. 本发明公开了一种基于深度学习的桥梁加速度监测数据异常检测方法、系统和装置,包括以下步骤:获取实桥加速度时程数据;对获取到的加速度时程数据进行处理,得到9维加速度特征矩阵;将所述9维加速度特征矩阵输入预先训练的LSTM神经网络模型;根据所述LSTM神经网络模型的输出,确定桥梁加速度监测数据异常类型。本发明可以有效避免传统设置阈</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN113866455A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
MEASURING
MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION,OR SHOCK
PHYSICS
TESTING
TESTING STATIC OR DYNAMIC BALANCE OF MACHINES ORSTRUCTURES
TESTING STRUCTURES OR APPARATUS NOT OTHERWISE PROVIDED FOR
title Deep learning-based bridge acceleration monitoring data anomaly detection method, system and device
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A55%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=DING%20YOULIANG&rft.date=2021-12-31&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN113866455A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true