Power grid load prediction method and system based on artificial intelligence
The invention relates to the technical field of artificial intelligence, in particular to a power grid load prediction method and system based on artificial intelligence. The method comprises the following steps: collecting historical load data of a power grid, and performing periodic correlation an...
Gespeichert in:
Hauptverfasser: | , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | LIU LIMIN CHEN MIN CAI BAOZHU ZHU YINGHUA ZHANG CHANGYUAN CHEN TIANYAN ZHOU XIN TIAN JIE |
description | The invention relates to the technical field of artificial intelligence, in particular to a power grid load prediction method and system based on artificial intelligence. The method comprises the following steps: collecting historical load data of a power grid, and performing periodic correlation analysis on the historical load data in different periods; according to a correlation analysis result, utilizing a prediction neural network to obtain a prediction load sequence of the target day in different periods; selecting predicted load sequences of the same target day in different periods, performing fluctuation decomposition on the predicted load sequences, obtaining corresponding trend components, periodic components and random components, further forming a feature sequence, and obtaining an accurate predicted load of the target day by using the feature sequence. According to the embodiment of the invention, power grid load prediction is carried out through the power grid load cross correlation of different |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN113837503A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN113837503A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN113837503A3</originalsourceid><addsrcrecordid>eNqNyjEKAjEQRuE0FqLeYTyA4BJEW1kUG8XCfhkz_-4OZJOQBMTba-EBrF7xvbm53uMLmYasQj6yUMoQdVVjoAl1jEIchMq7VEz05AKhL3Gu2qtT9qShwnsdEByWZtazL1j9ujDr8-nRXjZIsUNJ7BBQu_bWNPZg97utPdp_ng_V-jY2</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Power grid load prediction method and system based on artificial intelligence</title><source>esp@cenet</source><creator>LIU LIMIN ; CHEN MIN ; CAI BAOZHU ; ZHU YINGHUA ; ZHANG CHANGYUAN ; CHEN TIANYAN ; ZHOU XIN ; TIAN JIE</creator><creatorcontrib>LIU LIMIN ; CHEN MIN ; CAI BAOZHU ; ZHU YINGHUA ; ZHANG CHANGYUAN ; CHEN TIANYAN ; ZHOU XIN ; TIAN JIE</creatorcontrib><description>The invention relates to the technical field of artificial intelligence, in particular to a power grid load prediction method and system based on artificial intelligence. The method comprises the following steps: collecting historical load data of a power grid, and performing periodic correlation analysis on the historical load data in different periods; according to a correlation analysis result, utilizing a prediction neural network to obtain a prediction load sequence of the target day in different periods; selecting predicted load sequences of the same target day in different periods, performing fluctuation decomposition on the predicted load sequences, obtaining corresponding trend components, periodic components and random components, further forming a feature sequence, and obtaining an accurate predicted load of the target day by using the feature sequence. According to the embodiment of the invention, power grid load prediction is carried out through the power grid load cross correlation of different</description><language>chi ; eng</language><subject>CALCULATING ; CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTINGELECTRIC POWER ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRICITY ; GENERATION ; PHYSICS ; SYSTEMS FOR STORING ELECTRIC ENERGY ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20211224&DB=EPODOC&CC=CN&NR=113837503A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76516</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20211224&DB=EPODOC&CC=CN&NR=113837503A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LIU LIMIN</creatorcontrib><creatorcontrib>CHEN MIN</creatorcontrib><creatorcontrib>CAI BAOZHU</creatorcontrib><creatorcontrib>ZHU YINGHUA</creatorcontrib><creatorcontrib>ZHANG CHANGYUAN</creatorcontrib><creatorcontrib>CHEN TIANYAN</creatorcontrib><creatorcontrib>ZHOU XIN</creatorcontrib><creatorcontrib>TIAN JIE</creatorcontrib><title>Power grid load prediction method and system based on artificial intelligence</title><description>The invention relates to the technical field of artificial intelligence, in particular to a power grid load prediction method and system based on artificial intelligence. The method comprises the following steps: collecting historical load data of a power grid, and performing periodic correlation analysis on the historical load data in different periods; according to a correlation analysis result, utilizing a prediction neural network to obtain a prediction load sequence of the target day in different periods; selecting predicted load sequences of the same target day in different periods, performing fluctuation decomposition on the predicted load sequences, obtaining corresponding trend components, periodic components and random components, further forming a feature sequence, and obtaining an accurate predicted load of the target day by using the feature sequence. According to the embodiment of the invention, power grid load prediction is carried out through the power grid load cross correlation of different</description><subject>CALCULATING</subject><subject>CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTINGELECTRIC POWER</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>CONVERSION OR DISTRIBUTION OF ELECTRIC POWER</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRICITY</subject><subject>GENERATION</subject><subject>PHYSICS</subject><subject>SYSTEMS FOR STORING ELECTRIC ENERGY</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyjEKAjEQRuE0FqLeYTyA4BJEW1kUG8XCfhkz_-4OZJOQBMTba-EBrF7xvbm53uMLmYasQj6yUMoQdVVjoAl1jEIchMq7VEz05AKhL3Gu2qtT9qShwnsdEByWZtazL1j9ujDr8-nRXjZIsUNJ7BBQu_bWNPZg97utPdp_ng_V-jY2</recordid><startdate>20211224</startdate><enddate>20211224</enddate><creator>LIU LIMIN</creator><creator>CHEN MIN</creator><creator>CAI BAOZHU</creator><creator>ZHU YINGHUA</creator><creator>ZHANG CHANGYUAN</creator><creator>CHEN TIANYAN</creator><creator>ZHOU XIN</creator><creator>TIAN JIE</creator><scope>EVB</scope></search><sort><creationdate>20211224</creationdate><title>Power grid load prediction method and system based on artificial intelligence</title><author>LIU LIMIN ; CHEN MIN ; CAI BAOZHU ; ZHU YINGHUA ; ZHANG CHANGYUAN ; CHEN TIANYAN ; ZHOU XIN ; TIAN JIE</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN113837503A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTINGELECTRIC POWER</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>CONVERSION OR DISTRIBUTION OF ELECTRIC POWER</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRICITY</topic><topic>GENERATION</topic><topic>PHYSICS</topic><topic>SYSTEMS FOR STORING ELECTRIC ENERGY</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>LIU LIMIN</creatorcontrib><creatorcontrib>CHEN MIN</creatorcontrib><creatorcontrib>CAI BAOZHU</creatorcontrib><creatorcontrib>ZHU YINGHUA</creatorcontrib><creatorcontrib>ZHANG CHANGYUAN</creatorcontrib><creatorcontrib>CHEN TIANYAN</creatorcontrib><creatorcontrib>ZHOU XIN</creatorcontrib><creatorcontrib>TIAN JIE</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LIU LIMIN</au><au>CHEN MIN</au><au>CAI BAOZHU</au><au>ZHU YINGHUA</au><au>ZHANG CHANGYUAN</au><au>CHEN TIANYAN</au><au>ZHOU XIN</au><au>TIAN JIE</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Power grid load prediction method and system based on artificial intelligence</title><date>2021-12-24</date><risdate>2021</risdate><abstract>The invention relates to the technical field of artificial intelligence, in particular to a power grid load prediction method and system based on artificial intelligence. The method comprises the following steps: collecting historical load data of a power grid, and performing periodic correlation analysis on the historical load data in different periods; according to a correlation analysis result, utilizing a prediction neural network to obtain a prediction load sequence of the target day in different periods; selecting predicted load sequences of the same target day in different periods, performing fluctuation decomposition on the predicted load sequences, obtaining corresponding trend components, periodic components and random components, further forming a feature sequence, and obtaining an accurate predicted load of the target day by using the feature sequence. According to the embodiment of the invention, power grid load prediction is carried out through the power grid load cross correlation of different</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN113837503A |
source | esp@cenet |
subjects | CALCULATING CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTINGELECTRIC POWER COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING CONVERSION OR DISTRIBUTION OF ELECTRIC POWER COUNTING DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ELECTRICITY GENERATION PHYSICS SYSTEMS FOR STORING ELECTRIC ENERGY SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR |
title | Power grid load prediction method and system based on artificial intelligence |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T02%3A26%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LIU%20LIMIN&rft.date=2021-12-24&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN113837503A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |