Self-adaptive point cloud thinning method based on path point neighborhood and ground filtering

The invention provides a self-adaptive point cloud thinning method based on a path point neighborhood and ground filtering. The method comprises the following steps: S1, carrying out one-time random sampling on all point clouds; S2, dividing the point clouds into voxels by using an Octree algorithm;...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LUO XIN, CHEN YUZHEN, YANG YING, ZHAO YONGRUI, MAO WEIHUA, YANG SHILE
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LUO XIN
CHEN YUZHEN
YANG YING
ZHAO YONGRUI
MAO WEIHUA
YANG SHILE
description The invention provides a self-adaptive point cloud thinning method based on a path point neighborhood and ground filtering. The method comprises the following steps: S1, carrying out one-time random sampling on all point clouds; S2, dividing the point clouds into voxels by using an Octree algorithm; S3, importing path point data reserved by the acquisition equipment, calculating the Euclidean distance between the central point of each Octree voxel and each path point, then determining whether the voxels are reserved or not according to the Euclidean distance, and then removing all points in the voxels with overlarge distances to obtain a new sample space; S4, carrying out ground filtering, and separating ground data and object data on the ground; S5, performing voxel down-sampling on the ground data, and performing down-sampling on the object data on the ground according to the normal feature saliency value; combining the two point clouds again, and finally obtaining a point cloud thinning result. According t
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN113836484A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN113836484A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN113836484A3</originalsourceid><addsrcrecordid>eNqNyzEOwjAMQNEsDAi4gzlAh6oV6ooqEBML7JXbuEmkYEeJy_np0AMw_eX9vRleFOcKLSYNX4IkgRWmKIsF9YE5sIMPqRcLIxayIAwJ1W-SKTg_SvayAmQLLsuyZg5RKa_z0exmjIVOWw_mfL-9-0dFSQYqCSdi0qF_1nXTNZe2a6_NP-YHkAE9KQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Self-adaptive point cloud thinning method based on path point neighborhood and ground filtering</title><source>esp@cenet</source><creator>LUO XIN ; CHEN YUZHEN ; YANG YING ; ZHAO YONGRUI ; MAO WEIHUA ; YANG SHILE</creator><creatorcontrib>LUO XIN ; CHEN YUZHEN ; YANG YING ; ZHAO YONGRUI ; MAO WEIHUA ; YANG SHILE</creatorcontrib><description>The invention provides a self-adaptive point cloud thinning method based on a path point neighborhood and ground filtering. The method comprises the following steps: S1, carrying out one-time random sampling on all point clouds; S2, dividing the point clouds into voxels by using an Octree algorithm; S3, importing path point data reserved by the acquisition equipment, calculating the Euclidean distance between the central point of each Octree voxel and each path point, then determining whether the voxels are reserved or not according to the Euclidean distance, and then removing all points in the voxels with overlarge distances to obtain a new sample space; S4, carrying out ground filtering, and separating ground data and object data on the ground; S5, performing voxel down-sampling on the ground data, and performing down-sampling on the object data on the ground according to the normal feature saliency value; combining the two point clouds again, and finally obtaining a point cloud thinning result. According t</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; GYROSCOPIC INSTRUMENTS ; MEASURING ; MEASURING DISTANCES, LEVELS OR BEARINGS ; NAVIGATION ; PHOTOGRAMMETRY OR VIDEOGRAMMETRY ; PHYSICS ; SURVEYING ; TESTING</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20211224&amp;DB=EPODOC&amp;CC=CN&amp;NR=113836484A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76294</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20211224&amp;DB=EPODOC&amp;CC=CN&amp;NR=113836484A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LUO XIN</creatorcontrib><creatorcontrib>CHEN YUZHEN</creatorcontrib><creatorcontrib>YANG YING</creatorcontrib><creatorcontrib>ZHAO YONGRUI</creatorcontrib><creatorcontrib>MAO WEIHUA</creatorcontrib><creatorcontrib>YANG SHILE</creatorcontrib><title>Self-adaptive point cloud thinning method based on path point neighborhood and ground filtering</title><description>The invention provides a self-adaptive point cloud thinning method based on a path point neighborhood and ground filtering. The method comprises the following steps: S1, carrying out one-time random sampling on all point clouds; S2, dividing the point clouds into voxels by using an Octree algorithm; S3, importing path point data reserved by the acquisition equipment, calculating the Euclidean distance between the central point of each Octree voxel and each path point, then determining whether the voxels are reserved or not according to the Euclidean distance, and then removing all points in the voxels with overlarge distances to obtain a new sample space; S4, carrying out ground filtering, and separating ground data and object data on the ground; S5, performing voxel down-sampling on the ground data, and performing down-sampling on the object data on the ground according to the normal feature saliency value; combining the two point clouds again, and finally obtaining a point cloud thinning result. According t</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>GYROSCOPIC INSTRUMENTS</subject><subject>MEASURING</subject><subject>MEASURING DISTANCES, LEVELS OR BEARINGS</subject><subject>NAVIGATION</subject><subject>PHOTOGRAMMETRY OR VIDEOGRAMMETRY</subject><subject>PHYSICS</subject><subject>SURVEYING</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyzEOwjAMQNEsDAi4gzlAh6oV6ooqEBML7JXbuEmkYEeJy_np0AMw_eX9vRleFOcKLSYNX4IkgRWmKIsF9YE5sIMPqRcLIxayIAwJ1W-SKTg_SvayAmQLLsuyZg5RKa_z0exmjIVOWw_mfL-9-0dFSQYqCSdi0qF_1nXTNZe2a6_NP-YHkAE9KQ</recordid><startdate>20211224</startdate><enddate>20211224</enddate><creator>LUO XIN</creator><creator>CHEN YUZHEN</creator><creator>YANG YING</creator><creator>ZHAO YONGRUI</creator><creator>MAO WEIHUA</creator><creator>YANG SHILE</creator><scope>EVB</scope></search><sort><creationdate>20211224</creationdate><title>Self-adaptive point cloud thinning method based on path point neighborhood and ground filtering</title><author>LUO XIN ; CHEN YUZHEN ; YANG YING ; ZHAO YONGRUI ; MAO WEIHUA ; YANG SHILE</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN113836484A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>GYROSCOPIC INSTRUMENTS</topic><topic>MEASURING</topic><topic>MEASURING DISTANCES, LEVELS OR BEARINGS</topic><topic>NAVIGATION</topic><topic>PHOTOGRAMMETRY OR VIDEOGRAMMETRY</topic><topic>PHYSICS</topic><topic>SURVEYING</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>LUO XIN</creatorcontrib><creatorcontrib>CHEN YUZHEN</creatorcontrib><creatorcontrib>YANG YING</creatorcontrib><creatorcontrib>ZHAO YONGRUI</creatorcontrib><creatorcontrib>MAO WEIHUA</creatorcontrib><creatorcontrib>YANG SHILE</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LUO XIN</au><au>CHEN YUZHEN</au><au>YANG YING</au><au>ZHAO YONGRUI</au><au>MAO WEIHUA</au><au>YANG SHILE</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Self-adaptive point cloud thinning method based on path point neighborhood and ground filtering</title><date>2021-12-24</date><risdate>2021</risdate><abstract>The invention provides a self-adaptive point cloud thinning method based on a path point neighborhood and ground filtering. The method comprises the following steps: S1, carrying out one-time random sampling on all point clouds; S2, dividing the point clouds into voxels by using an Octree algorithm; S3, importing path point data reserved by the acquisition equipment, calculating the Euclidean distance between the central point of each Octree voxel and each path point, then determining whether the voxels are reserved or not according to the Euclidean distance, and then removing all points in the voxels with overlarge distances to obtain a new sample space; S4, carrying out ground filtering, and separating ground data and object data on the ground; S5, performing voxel down-sampling on the ground data, and performing down-sampling on the object data on the ground according to the normal feature saliency value; combining the two point clouds again, and finally obtaining a point cloud thinning result. According t</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN113836484A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
GYROSCOPIC INSTRUMENTS
MEASURING
MEASURING DISTANCES, LEVELS OR BEARINGS
NAVIGATION
PHOTOGRAMMETRY OR VIDEOGRAMMETRY
PHYSICS
SURVEYING
TESTING
title Self-adaptive point cloud thinning method based on path point neighborhood and ground filtering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T06%3A50%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LUO%20XIN&rft.date=2021-12-24&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN113836484A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true