Target segmentation tracking method and device, electronic equipment and storage medium

The embodiment of the invention provides a multi-target segmentation tracking method and device, electronic equipment and a storage medium. The method comprises the steps: firstly, conducting convolutional coding on a to-be-processed image through a convolutional neural network, and constructing a f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: GUO ZELING, DONG XIAOYUN, CUI JIAHE, NIU JIANWEI, OUYANG ZHENCHAO
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator GUO ZELING
DONG XIAOYUN
CUI JIAHE
NIU JIANWEI
OUYANG ZHENCHAO
description The embodiment of the invention provides a multi-target segmentation tracking method and device, electronic equipment and a storage medium. The method comprises the steps: firstly, conducting convolutional coding on a to-be-processed image through a convolutional neural network, and constructing a feature pyramid; predicting the category and position of each target according to the feature pyramid, and calculating the centroid coordinate of each target; then carrying out regression on the contour of each target, and calculating coordinates of contour points of each target based on centroid coordinates; generating tracking vectors of the targets according to the coordinates of the contour points; and finally, matching the tracking vector of each target in the continuous frames to obtain a tracking ID of each target. According to the embodiment of the invention, the coordinate of the contour point of each target is predicted based on the centroid coordinates, a target tracking vector is calculated, a complex mu
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN113793371A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN113793371A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN113793371A3</originalsourceid><addsrcrecordid>eNqNyzsOwjAQRdE0FAjYw9BDYbmIKFEEoqKKRBmN7IexiD_YE9bPRyyA6jbnzptLz8VBqMIFRGHxKZIUNncfHQXILVniaMni6Q02hBFGSoreEB6Tz5_rC6qkwg7vx_opLJvZlceK1a-LZn089N1pi5wG1MwGETJ0Z6V0u9O6VXv9j3kBjj46RQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Target segmentation tracking method and device, electronic equipment and storage medium</title><source>esp@cenet</source><creator>GUO ZELING ; DONG XIAOYUN ; CUI JIAHE ; NIU JIANWEI ; OUYANG ZHENCHAO</creator><creatorcontrib>GUO ZELING ; DONG XIAOYUN ; CUI JIAHE ; NIU JIANWEI ; OUYANG ZHENCHAO</creatorcontrib><description>The embodiment of the invention provides a multi-target segmentation tracking method and device, electronic equipment and a storage medium. The method comprises the steps: firstly, conducting convolutional coding on a to-be-processed image through a convolutional neural network, and constructing a feature pyramid; predicting the category and position of each target according to the feature pyramid, and calculating the centroid coordinate of each target; then carrying out regression on the contour of each target, and calculating coordinates of contour points of each target based on centroid coordinates; generating tracking vectors of the targets according to the coordinates of the contour points; and finally, matching the tracking vector of each target in the continuous frames to obtain a tracking ID of each target. According to the embodiment of the invention, the coordinate of the contour point of each target is predicted based on the centroid coordinates, a target tracking vector is calculated, a complex mu</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20211214&amp;DB=EPODOC&amp;CC=CN&amp;NR=113793371A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76294</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20211214&amp;DB=EPODOC&amp;CC=CN&amp;NR=113793371A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>GUO ZELING</creatorcontrib><creatorcontrib>DONG XIAOYUN</creatorcontrib><creatorcontrib>CUI JIAHE</creatorcontrib><creatorcontrib>NIU JIANWEI</creatorcontrib><creatorcontrib>OUYANG ZHENCHAO</creatorcontrib><title>Target segmentation tracking method and device, electronic equipment and storage medium</title><description>The embodiment of the invention provides a multi-target segmentation tracking method and device, electronic equipment and a storage medium. The method comprises the steps: firstly, conducting convolutional coding on a to-be-processed image through a convolutional neural network, and constructing a feature pyramid; predicting the category and position of each target according to the feature pyramid, and calculating the centroid coordinate of each target; then carrying out regression on the contour of each target, and calculating coordinates of contour points of each target based on centroid coordinates; generating tracking vectors of the targets according to the coordinates of the contour points; and finally, matching the tracking vector of each target in the continuous frames to obtain a tracking ID of each target. According to the embodiment of the invention, the coordinate of the contour point of each target is predicted based on the centroid coordinates, a target tracking vector is calculated, a complex mu</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyzsOwjAQRdE0FAjYw9BDYbmIKFEEoqKKRBmN7IexiD_YE9bPRyyA6jbnzptLz8VBqMIFRGHxKZIUNncfHQXILVniaMni6Q02hBFGSoreEB6Tz5_rC6qkwg7vx_opLJvZlceK1a-LZn089N1pi5wG1MwGETJ0Z6V0u9O6VXv9j3kBjj46RQ</recordid><startdate>20211214</startdate><enddate>20211214</enddate><creator>GUO ZELING</creator><creator>DONG XIAOYUN</creator><creator>CUI JIAHE</creator><creator>NIU JIANWEI</creator><creator>OUYANG ZHENCHAO</creator><scope>EVB</scope></search><sort><creationdate>20211214</creationdate><title>Target segmentation tracking method and device, electronic equipment and storage medium</title><author>GUO ZELING ; DONG XIAOYUN ; CUI JIAHE ; NIU JIANWEI ; OUYANG ZHENCHAO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN113793371A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>GUO ZELING</creatorcontrib><creatorcontrib>DONG XIAOYUN</creatorcontrib><creatorcontrib>CUI JIAHE</creatorcontrib><creatorcontrib>NIU JIANWEI</creatorcontrib><creatorcontrib>OUYANG ZHENCHAO</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>GUO ZELING</au><au>DONG XIAOYUN</au><au>CUI JIAHE</au><au>NIU JIANWEI</au><au>OUYANG ZHENCHAO</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Target segmentation tracking method and device, electronic equipment and storage medium</title><date>2021-12-14</date><risdate>2021</risdate><abstract>The embodiment of the invention provides a multi-target segmentation tracking method and device, electronic equipment and a storage medium. The method comprises the steps: firstly, conducting convolutional coding on a to-be-processed image through a convolutional neural network, and constructing a feature pyramid; predicting the category and position of each target according to the feature pyramid, and calculating the centroid coordinate of each target; then carrying out regression on the contour of each target, and calculating coordinates of contour points of each target based on centroid coordinates; generating tracking vectors of the targets according to the coordinates of the contour points; and finally, matching the tracking vector of each target in the continuous frames to obtain a tracking ID of each target. According to the embodiment of the invention, the coordinate of the contour point of each target is predicted based on the centroid coordinates, a target tracking vector is calculated, a complex mu</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN113793371A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title Target segmentation tracking method and device, electronic equipment and storage medium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T08%3A43%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=GUO%20ZELING&rft.date=2021-12-14&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN113793371A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true