Deep learning integrated tracking algorithm based on target movement trajectory prediction

The invention discloses a deep learning integrated tracking algorithm based on target movement trajectory prediction. The algorithm comprises the steps: firstly reading a video frame sequence, and obtaining an initial frame image; then initializing a target tracking position, and calculating semanti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: AN ZHIYONG, HAO FANGJING, XIE QINGSONG, SHEN JINGWEI, LI BO
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator AN ZHIYONG
HAO FANGJING
XIE QINGSONG
SHEN JINGWEI
LI BO
description The invention discloses a deep learning integrated tracking algorithm based on target movement trajectory prediction. The algorithm comprises the steps: firstly reading a video frame sequence, and obtaining an initial frame image; then initializing a target tracking position, and calculating semantic information pre_label of a tracking target by using a detection algorithm; calculating a color feature average template S; judging whether a detection algorithm can be started or not; predicting the moving direction of the target object according to the t-5 frame and the t-15 frame, and screening k potential target objects of which the semantics is pre_label; and finally, respectively extracting three color features of the K target objects and performing similarity calculation on the three color features and the template S, selecting a maximum similarity value SDr from K similarity results, and if SDr is greater than tp, performing deviation correction on a tracking result by using a target object tracking frame
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN113744313A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN113744313A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN113744313A3</originalsourceid><addsrcrecordid>eNqNijEKwkAQRdNYiHqH8QAWYQPWEhUrKyubMG6-68ZkdpkMgrfXgAewevDemxfXPZCpB6tECRTFEJQNLZmyf06O-5A02mOgG4_fkISMNcBoSC8MEJveDt6Svikr2ugtJlkWszv3I1Y_Lor18XCpTxvk1GDM7CGwpj6XpdtWlSvdzv3zfAB8iTvM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Deep learning integrated tracking algorithm based on target movement trajectory prediction</title><source>esp@cenet</source><creator>AN ZHIYONG ; HAO FANGJING ; XIE QINGSONG ; SHEN JINGWEI ; LI BO</creator><creatorcontrib>AN ZHIYONG ; HAO FANGJING ; XIE QINGSONG ; SHEN JINGWEI ; LI BO</creatorcontrib><description>The invention discloses a deep learning integrated tracking algorithm based on target movement trajectory prediction. The algorithm comprises the steps: firstly reading a video frame sequence, and obtaining an initial frame image; then initializing a target tracking position, and calculating semantic information pre_label of a tracking target by using a detection algorithm; calculating a color feature average template S; judging whether a detection algorithm can be started or not; predicting the moving direction of the target object according to the t-5 frame and the t-15 frame, and screening k potential target objects of which the semantics is pre_label; and finally, respectively extracting three color features of the K target objects and performing similarity calculation on the three color features and the template S, selecting a maximum similarity value SDr from K similarity results, and if SDr is greater than tp, performing deviation correction on a tracking result by using a target object tracking frame</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20211203&amp;DB=EPODOC&amp;CC=CN&amp;NR=113744313A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20211203&amp;DB=EPODOC&amp;CC=CN&amp;NR=113744313A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>AN ZHIYONG</creatorcontrib><creatorcontrib>HAO FANGJING</creatorcontrib><creatorcontrib>XIE QINGSONG</creatorcontrib><creatorcontrib>SHEN JINGWEI</creatorcontrib><creatorcontrib>LI BO</creatorcontrib><title>Deep learning integrated tracking algorithm based on target movement trajectory prediction</title><description>The invention discloses a deep learning integrated tracking algorithm based on target movement trajectory prediction. The algorithm comprises the steps: firstly reading a video frame sequence, and obtaining an initial frame image; then initializing a target tracking position, and calculating semantic information pre_label of a tracking target by using a detection algorithm; calculating a color feature average template S; judging whether a detection algorithm can be started or not; predicting the moving direction of the target object according to the t-5 frame and the t-15 frame, and screening k potential target objects of which the semantics is pre_label; and finally, respectively extracting three color features of the K target objects and performing similarity calculation on the three color features and the template S, selecting a maximum similarity value SDr from K similarity results, and if SDr is greater than tp, performing deviation correction on a tracking result by using a target object tracking frame</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNijEKwkAQRdNYiHqH8QAWYQPWEhUrKyubMG6-68ZkdpkMgrfXgAewevDemxfXPZCpB6tECRTFEJQNLZmyf06O-5A02mOgG4_fkISMNcBoSC8MEJveDt6Svikr2ugtJlkWszv3I1Y_Lor18XCpTxvk1GDM7CGwpj6XpdtWlSvdzv3zfAB8iTvM</recordid><startdate>20211203</startdate><enddate>20211203</enddate><creator>AN ZHIYONG</creator><creator>HAO FANGJING</creator><creator>XIE QINGSONG</creator><creator>SHEN JINGWEI</creator><creator>LI BO</creator><scope>EVB</scope></search><sort><creationdate>20211203</creationdate><title>Deep learning integrated tracking algorithm based on target movement trajectory prediction</title><author>AN ZHIYONG ; HAO FANGJING ; XIE QINGSONG ; SHEN JINGWEI ; LI BO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN113744313A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>AN ZHIYONG</creatorcontrib><creatorcontrib>HAO FANGJING</creatorcontrib><creatorcontrib>XIE QINGSONG</creatorcontrib><creatorcontrib>SHEN JINGWEI</creatorcontrib><creatorcontrib>LI BO</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>AN ZHIYONG</au><au>HAO FANGJING</au><au>XIE QINGSONG</au><au>SHEN JINGWEI</au><au>LI BO</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Deep learning integrated tracking algorithm based on target movement trajectory prediction</title><date>2021-12-03</date><risdate>2021</risdate><abstract>The invention discloses a deep learning integrated tracking algorithm based on target movement trajectory prediction. The algorithm comprises the steps: firstly reading a video frame sequence, and obtaining an initial frame image; then initializing a target tracking position, and calculating semantic information pre_label of a tracking target by using a detection algorithm; calculating a color feature average template S; judging whether a detection algorithm can be started or not; predicting the moving direction of the target object according to the t-5 frame and the t-15 frame, and screening k potential target objects of which the semantics is pre_label; and finally, respectively extracting three color features of the K target objects and performing similarity calculation on the three color features and the template S, selecting a maximum similarity value SDr from K similarity results, and if SDr is greater than tp, performing deviation correction on a tracking result by using a target object tracking frame</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN113744313A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title Deep learning integrated tracking algorithm based on target movement trajectory prediction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T21%3A03%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=AN%20ZHIYONG&rft.date=2021-12-03&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN113744313A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true