Unmanned aerial vehicle visual inspection and recognition method for crane complex steel structure surface defects

The invention discloses an unmanned aerial vehicle visual inspection and recognition method for crane complex steel structure surface defects, which comprises the following steps: carrying a high-resolution visible light camera by using an inverted unmanned aerial vehicle platform, and collecting im...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: WU XIAOYUE, CAO MING, ZHANG SHENRU, FENG YUEGUI, JIANG MING, NI DAJIN, ZHOU QIANFEI, WANG SHUANG, NING SHIXIANG, DING SHUQING, WU XIANGSHENG, WANG HUIFANG, QING GUANGWEI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator WU XIAOYUE
CAO MING
ZHANG SHENRU
FENG YUEGUI
JIANG MING
NI DAJIN
ZHOU QIANFEI
WANG SHUANG
NING SHIXIANG
DING SHUQING
WU XIANGSHENG
WANG HUIFANG
QING GUANGWEI
description The invention discloses an unmanned aerial vehicle visual inspection and recognition method for crane complex steel structure surface defects, which comprises the following steps: carrying a high-resolution visible light camera by using an inverted unmanned aerial vehicle platform, and collecting images through a cattle-tilling type full-coverage inspection path; constructing a classification algorithm fusing a support vector machine, a deep convolutional network and a generative adversarial network, subjecting multi-scale and multi-type defects on the surface of the crane structure under the complex background to classification detection, and marking the positions of the defects with a minimum bounding rectangular frame of the defects; segmenting the detected defect target frame area to extract a connected domain, establishing a pixel equivalent accurate calibration model based on multi-point laser ranging, and counting and collecting parameters such as length, width and area of the defect through a pixel po
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN113744270A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN113744270A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN113744270A3</originalsourceid><addsrcrecordid>eNqNjEEKwjAQRbtxIeodxgMI1ha6lqK4cqXrEpJfG0gnYZIUj28QD-DmPx48_rqSJ8-KGYYUxCpHCyarHWixMRe1HAN0sp5JsSGB9i-2X5-RJm9o9EJaFIO0n4PDm2ICXFnJOmUBxSyj0iCDsVzFbbUalYvY_bip9tfLo78dEPyAGErKSEN_r-uma9tTdzw3_zQfWA5E2Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Unmanned aerial vehicle visual inspection and recognition method for crane complex steel structure surface defects</title><source>esp@cenet</source><creator>WU XIAOYUE ; CAO MING ; ZHANG SHENRU ; FENG YUEGUI ; JIANG MING ; NI DAJIN ; ZHOU QIANFEI ; WANG SHUANG ; NING SHIXIANG ; DING SHUQING ; WU XIANGSHENG ; WANG HUIFANG ; QING GUANGWEI</creator><creatorcontrib>WU XIAOYUE ; CAO MING ; ZHANG SHENRU ; FENG YUEGUI ; JIANG MING ; NI DAJIN ; ZHOU QIANFEI ; WANG SHUANG ; NING SHIXIANG ; DING SHUQING ; WU XIANGSHENG ; WANG HUIFANG ; QING GUANGWEI</creatorcontrib><description>The invention discloses an unmanned aerial vehicle visual inspection and recognition method for crane complex steel structure surface defects, which comprises the following steps: carrying a high-resolution visible light camera by using an inverted unmanned aerial vehicle platform, and collecting images through a cattle-tilling type full-coverage inspection path; constructing a classification algorithm fusing a support vector machine, a deep convolutional network and a generative adversarial network, subjecting multi-scale and multi-type defects on the surface of the crane structure under the complex background to classification detection, and marking the positions of the defects with a minimum bounding rectangular frame of the defects; segmenting the detected defect target frame area to extract a connected domain, establishing a pixel equivalent accurate calibration model based on multi-point laser ranging, and counting and collecting parameters such as length, width and area of the defect through a pixel po</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20211203&amp;DB=EPODOC&amp;CC=CN&amp;NR=113744270A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,309,781,886,25569,76552</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20211203&amp;DB=EPODOC&amp;CC=CN&amp;NR=113744270A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WU XIAOYUE</creatorcontrib><creatorcontrib>CAO MING</creatorcontrib><creatorcontrib>ZHANG SHENRU</creatorcontrib><creatorcontrib>FENG YUEGUI</creatorcontrib><creatorcontrib>JIANG MING</creatorcontrib><creatorcontrib>NI DAJIN</creatorcontrib><creatorcontrib>ZHOU QIANFEI</creatorcontrib><creatorcontrib>WANG SHUANG</creatorcontrib><creatorcontrib>NING SHIXIANG</creatorcontrib><creatorcontrib>DING SHUQING</creatorcontrib><creatorcontrib>WU XIANGSHENG</creatorcontrib><creatorcontrib>WANG HUIFANG</creatorcontrib><creatorcontrib>QING GUANGWEI</creatorcontrib><title>Unmanned aerial vehicle visual inspection and recognition method for crane complex steel structure surface defects</title><description>The invention discloses an unmanned aerial vehicle visual inspection and recognition method for crane complex steel structure surface defects, which comprises the following steps: carrying a high-resolution visible light camera by using an inverted unmanned aerial vehicle platform, and collecting images through a cattle-tilling type full-coverage inspection path; constructing a classification algorithm fusing a support vector machine, a deep convolutional network and a generative adversarial network, subjecting multi-scale and multi-type defects on the surface of the crane structure under the complex background to classification detection, and marking the positions of the defects with a minimum bounding rectangular frame of the defects; segmenting the detected defect target frame area to extract a connected domain, establishing a pixel equivalent accurate calibration model based on multi-point laser ranging, and counting and collecting parameters such as length, width and area of the defect through a pixel po</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjEEKwjAQRbtxIeodxgMI1ha6lqK4cqXrEpJfG0gnYZIUj28QD-DmPx48_rqSJ8-KGYYUxCpHCyarHWixMRe1HAN0sp5JsSGB9i-2X5-RJm9o9EJaFIO0n4PDm2ICXFnJOmUBxSyj0iCDsVzFbbUalYvY_bip9tfLo78dEPyAGErKSEN_r-uma9tTdzw3_zQfWA5E2Q</recordid><startdate>20211203</startdate><enddate>20211203</enddate><creator>WU XIAOYUE</creator><creator>CAO MING</creator><creator>ZHANG SHENRU</creator><creator>FENG YUEGUI</creator><creator>JIANG MING</creator><creator>NI DAJIN</creator><creator>ZHOU QIANFEI</creator><creator>WANG SHUANG</creator><creator>NING SHIXIANG</creator><creator>DING SHUQING</creator><creator>WU XIANGSHENG</creator><creator>WANG HUIFANG</creator><creator>QING GUANGWEI</creator><scope>EVB</scope></search><sort><creationdate>20211203</creationdate><title>Unmanned aerial vehicle visual inspection and recognition method for crane complex steel structure surface defects</title><author>WU XIAOYUE ; CAO MING ; ZHANG SHENRU ; FENG YUEGUI ; JIANG MING ; NI DAJIN ; ZHOU QIANFEI ; WANG SHUANG ; NING SHIXIANG ; DING SHUQING ; WU XIANGSHENG ; WANG HUIFANG ; QING GUANGWEI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN113744270A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>WU XIAOYUE</creatorcontrib><creatorcontrib>CAO MING</creatorcontrib><creatorcontrib>ZHANG SHENRU</creatorcontrib><creatorcontrib>FENG YUEGUI</creatorcontrib><creatorcontrib>JIANG MING</creatorcontrib><creatorcontrib>NI DAJIN</creatorcontrib><creatorcontrib>ZHOU QIANFEI</creatorcontrib><creatorcontrib>WANG SHUANG</creatorcontrib><creatorcontrib>NING SHIXIANG</creatorcontrib><creatorcontrib>DING SHUQING</creatorcontrib><creatorcontrib>WU XIANGSHENG</creatorcontrib><creatorcontrib>WANG HUIFANG</creatorcontrib><creatorcontrib>QING GUANGWEI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WU XIAOYUE</au><au>CAO MING</au><au>ZHANG SHENRU</au><au>FENG YUEGUI</au><au>JIANG MING</au><au>NI DAJIN</au><au>ZHOU QIANFEI</au><au>WANG SHUANG</au><au>NING SHIXIANG</au><au>DING SHUQING</au><au>WU XIANGSHENG</au><au>WANG HUIFANG</au><au>QING GUANGWEI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Unmanned aerial vehicle visual inspection and recognition method for crane complex steel structure surface defects</title><date>2021-12-03</date><risdate>2021</risdate><abstract>The invention discloses an unmanned aerial vehicle visual inspection and recognition method for crane complex steel structure surface defects, which comprises the following steps: carrying a high-resolution visible light camera by using an inverted unmanned aerial vehicle platform, and collecting images through a cattle-tilling type full-coverage inspection path; constructing a classification algorithm fusing a support vector machine, a deep convolutional network and a generative adversarial network, subjecting multi-scale and multi-type defects on the surface of the crane structure under the complex background to classification detection, and marking the positions of the defects with a minimum bounding rectangular frame of the defects; segmenting the detected defect target frame area to extract a connected domain, establishing a pixel equivalent accurate calibration model based on multi-point laser ranging, and counting and collecting parameters such as length, width and area of the defect through a pixel po</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN113744270A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
HANDLING RECORD CARRIERS
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title Unmanned aerial vehicle visual inspection and recognition method for crane complex steel structure surface defects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T06%3A30%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WU%20XIAOYUE&rft.date=2021-12-03&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN113744270A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true