Multi-dimensional transportation data fusion and data quality detection method
The invention discloses a multi-dimensional transportation data fusion and data quality detection method. The method comprises the following steps: S1, data collection: acquiring original travel data of different types of vehicles from different platforms and systems, wherein the method comprises a...
Gespeichert in:
Hauptverfasser: | , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | YANG SENBIN DAI YUCONG CHEN HUAN YU LIAN LI ZHIWU YIN JIELI LUO JIANPING CHEN ZHAOFAN |
description | The invention discloses a multi-dimensional transportation data fusion and data quality detection method. The method comprises the following steps: S1, data collection: acquiring original travel data of different types of vehicles from different platforms and systems, wherein the method comprises a data acquisition component, a data storage component and a data preprocessing component; S2, data fusion including three levels of data level fusion, feature level fusion and decision level fusion; and S3, fusion data quality detection. According to the invention, more objective and accurate passenger travel rule analysis, bus section passenger flow prediction, taxi passenger-carrying route recommendation and sharing of multi-dimensional transportation fusion data can be carried out by using the multi-dimensional traffic travel data, a set of double-closed-loop fusion data quality detection method is provided, and the data quality is ensured to the greatest extent; and the invention solves the problems that: data a |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN113742330A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN113742330A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN113742330A3</originalsourceid><addsrcrecordid>eNrjZPDzLc0pydRNycxNzSvOzM9LzFEoKUrMKy7ILypJLAEKKKQkliQqpJWCJBUS81Ig_MLSxJzMkkqFlNSS1GSwstzUkoz8FB4G1rTEnOJUXijNzaDo5hri7KGbWpAfn1pckJicmpdaEu_sZ2hobG5iZGxs4GhMjBoAf3Q3PA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Multi-dimensional transportation data fusion and data quality detection method</title><source>esp@cenet</source><creator>YANG SENBIN ; DAI YUCONG ; CHEN HUAN ; YU LIAN ; LI ZHIWU ; YIN JIELI ; LUO JIANPING ; CHEN ZHAOFAN</creator><creatorcontrib>YANG SENBIN ; DAI YUCONG ; CHEN HUAN ; YU LIAN ; LI ZHIWU ; YIN JIELI ; LUO JIANPING ; CHEN ZHAOFAN</creatorcontrib><description>The invention discloses a multi-dimensional transportation data fusion and data quality detection method. The method comprises the following steps: S1, data collection: acquiring original travel data of different types of vehicles from different platforms and systems, wherein the method comprises a data acquisition component, a data storage component and a data preprocessing component; S2, data fusion including three levels of data level fusion, feature level fusion and decision level fusion; and S3, fusion data quality detection. According to the invention, more objective and accurate passenger travel rule analysis, bus section passenger flow prediction, taxi passenger-carrying route recommendation and sharing of multi-dimensional transportation fusion data can be carried out by using the multi-dimensional traffic travel data, a set of double-closed-loop fusion data quality detection method is provided, and the data quality is ensured to the greatest extent; and the invention solves the problems that: data a</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20211203&DB=EPODOC&CC=CN&NR=113742330A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20211203&DB=EPODOC&CC=CN&NR=113742330A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>YANG SENBIN</creatorcontrib><creatorcontrib>DAI YUCONG</creatorcontrib><creatorcontrib>CHEN HUAN</creatorcontrib><creatorcontrib>YU LIAN</creatorcontrib><creatorcontrib>LI ZHIWU</creatorcontrib><creatorcontrib>YIN JIELI</creatorcontrib><creatorcontrib>LUO JIANPING</creatorcontrib><creatorcontrib>CHEN ZHAOFAN</creatorcontrib><title>Multi-dimensional transportation data fusion and data quality detection method</title><description>The invention discloses a multi-dimensional transportation data fusion and data quality detection method. The method comprises the following steps: S1, data collection: acquiring original travel data of different types of vehicles from different platforms and systems, wherein the method comprises a data acquisition component, a data storage component and a data preprocessing component; S2, data fusion including three levels of data level fusion, feature level fusion and decision level fusion; and S3, fusion data quality detection. According to the invention, more objective and accurate passenger travel rule analysis, bus section passenger flow prediction, taxi passenger-carrying route recommendation and sharing of multi-dimensional transportation fusion data can be carried out by using the multi-dimensional traffic travel data, a set of double-closed-loop fusion data quality detection method is provided, and the data quality is ensured to the greatest extent; and the invention solves the problems that: data a</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPDzLc0pydRNycxNzSvOzM9LzFEoKUrMKy7ILypJLAEKKKQkliQqpJWCJBUS81Ig_MLSxJzMkkqFlNSS1GSwstzUkoz8FB4G1rTEnOJUXijNzaDo5hri7KGbWpAfn1pckJicmpdaEu_sZ2hobG5iZGxs4GhMjBoAf3Q3PA</recordid><startdate>20211203</startdate><enddate>20211203</enddate><creator>YANG SENBIN</creator><creator>DAI YUCONG</creator><creator>CHEN HUAN</creator><creator>YU LIAN</creator><creator>LI ZHIWU</creator><creator>YIN JIELI</creator><creator>LUO JIANPING</creator><creator>CHEN ZHAOFAN</creator><scope>EVB</scope></search><sort><creationdate>20211203</creationdate><title>Multi-dimensional transportation data fusion and data quality detection method</title><author>YANG SENBIN ; DAI YUCONG ; CHEN HUAN ; YU LIAN ; LI ZHIWU ; YIN JIELI ; LUO JIANPING ; CHEN ZHAOFAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN113742330A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>YANG SENBIN</creatorcontrib><creatorcontrib>DAI YUCONG</creatorcontrib><creatorcontrib>CHEN HUAN</creatorcontrib><creatorcontrib>YU LIAN</creatorcontrib><creatorcontrib>LI ZHIWU</creatorcontrib><creatorcontrib>YIN JIELI</creatorcontrib><creatorcontrib>LUO JIANPING</creatorcontrib><creatorcontrib>CHEN ZHAOFAN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>YANG SENBIN</au><au>DAI YUCONG</au><au>CHEN HUAN</au><au>YU LIAN</au><au>LI ZHIWU</au><au>YIN JIELI</au><au>LUO JIANPING</au><au>CHEN ZHAOFAN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Multi-dimensional transportation data fusion and data quality detection method</title><date>2021-12-03</date><risdate>2021</risdate><abstract>The invention discloses a multi-dimensional transportation data fusion and data quality detection method. The method comprises the following steps: S1, data collection: acquiring original travel data of different types of vehicles from different platforms and systems, wherein the method comprises a data acquisition component, a data storage component and a data preprocessing component; S2, data fusion including three levels of data level fusion, feature level fusion and decision level fusion; and S3, fusion data quality detection. According to the invention, more objective and accurate passenger travel rule analysis, bus section passenger flow prediction, taxi passenger-carrying route recommendation and sharing of multi-dimensional transportation fusion data can be carried out by using the multi-dimensional traffic travel data, a set of double-closed-loop fusion data quality detection method is provided, and the data quality is ensured to the greatest extent; and the invention solves the problems that: data a</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN113742330A |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | Multi-dimensional transportation data fusion and data quality detection method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T13%3A53%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=YANG%20SENBIN&rft.date=2021-12-03&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN113742330A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |