Unmanned aerial vehicle continuous maneuver control method based on distributed reinforcement learning
The invention relates to the technical field of machine learning, in particular to an unmanned aerial vehicle continuous maneuver control method based on distributed reinforcement learning. The method comprises the steps of constructing a simulation training environment based on unmanned aerial vehi...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | FAN SONGYUAN YU JIN SUN ZHIXIAO PIAO HAIYIN HAN YUE SUN YANG PENG XUANQI ZHANG XINHAO WANG HE YANG SHENGQI |
description | The invention relates to the technical field of machine learning, in particular to an unmanned aerial vehicle continuous maneuver control method based on distributed reinforcement learning. The method comprises the steps of constructing a simulation training environment based on unmanned aerial vehicle kinetic parameters; interacting the simulation training environment with a reinforcement learning training system, wherein the reinforcement learning training system is used for carrying out iterative updating on an unmanned aerial vehicle continuous maneuver control strategy neural network, including receiving information of a data experience pool, generating a control strategy through a training algorithm, and controlling an unmanned aerial vehicle to act according to the control strategy, and the data experience pool stores environment information generated by the simulation training environment and unmanned aerial vehicle state information; and sampling the sample data of different random parameters to obta |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN113721645A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN113721645A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN113721645A3</originalsourceid><addsrcrecordid>eNqNizsOwjAQBdNQIOAOywEoQvjUKAJRUUEdbZwXYsleR2s75ydCHIDqaUbzlkX_Es8i6Iihlh1NGKxxIBMkWckhR5oD5An6dRoceaQhdNRynH9BqLMxqW1zmlFhpQ9q4CGJHFjFyntdLHp2EZvfrort7fqs7zuMoUEc2UCQmvpRltV5X54Ox0v1T_MB_9hAqQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Unmanned aerial vehicle continuous maneuver control method based on distributed reinforcement learning</title><source>esp@cenet</source><creator>FAN SONGYUAN ; YU JIN ; SUN ZHIXIAO ; PIAO HAIYIN ; HAN YUE ; SUN YANG ; PENG XUANQI ; ZHANG XINHAO ; WANG HE ; YANG SHENGQI</creator><creatorcontrib>FAN SONGYUAN ; YU JIN ; SUN ZHIXIAO ; PIAO HAIYIN ; HAN YUE ; SUN YANG ; PENG XUANQI ; ZHANG XINHAO ; WANG HE ; YANG SHENGQI</creatorcontrib><description>The invention relates to the technical field of machine learning, in particular to an unmanned aerial vehicle continuous maneuver control method based on distributed reinforcement learning. The method comprises the steps of constructing a simulation training environment based on unmanned aerial vehicle kinetic parameters; interacting the simulation training environment with a reinforcement learning training system, wherein the reinforcement learning training system is used for carrying out iterative updating on an unmanned aerial vehicle continuous maneuver control strategy neural network, including receiving information of a data experience pool, generating a control strategy through a training algorithm, and controlling an unmanned aerial vehicle to act according to the control strategy, and the data experience pool stores environment information generated by the simulation training environment and unmanned aerial vehicle state information; and sampling the sample data of different random parameters to obta</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; CONTROLLING ; COUNTING ; PHYSICS ; REGULATING ; SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20211130&DB=EPODOC&CC=CN&NR=113721645A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20211130&DB=EPODOC&CC=CN&NR=113721645A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>FAN SONGYUAN</creatorcontrib><creatorcontrib>YU JIN</creatorcontrib><creatorcontrib>SUN ZHIXIAO</creatorcontrib><creatorcontrib>PIAO HAIYIN</creatorcontrib><creatorcontrib>HAN YUE</creatorcontrib><creatorcontrib>SUN YANG</creatorcontrib><creatorcontrib>PENG XUANQI</creatorcontrib><creatorcontrib>ZHANG XINHAO</creatorcontrib><creatorcontrib>WANG HE</creatorcontrib><creatorcontrib>YANG SHENGQI</creatorcontrib><title>Unmanned aerial vehicle continuous maneuver control method based on distributed reinforcement learning</title><description>The invention relates to the technical field of machine learning, in particular to an unmanned aerial vehicle continuous maneuver control method based on distributed reinforcement learning. The method comprises the steps of constructing a simulation training environment based on unmanned aerial vehicle kinetic parameters; interacting the simulation training environment with a reinforcement learning training system, wherein the reinforcement learning training system is used for carrying out iterative updating on an unmanned aerial vehicle continuous maneuver control strategy neural network, including receiving information of a data experience pool, generating a control strategy through a training algorithm, and controlling an unmanned aerial vehicle to act according to the control strategy, and the data experience pool stores environment information generated by the simulation training environment and unmanned aerial vehicle state information; and sampling the sample data of different random parameters to obta</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>CONTROLLING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><subject>REGULATING</subject><subject>SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNizsOwjAQBdNQIOAOywEoQvjUKAJRUUEdbZwXYsleR2s75ydCHIDqaUbzlkX_Es8i6Iihlh1NGKxxIBMkWckhR5oD5An6dRoceaQhdNRynH9BqLMxqW1zmlFhpQ9q4CGJHFjFyntdLHp2EZvfrort7fqs7zuMoUEc2UCQmvpRltV5X54Ox0v1T_MB_9hAqQ</recordid><startdate>20211130</startdate><enddate>20211130</enddate><creator>FAN SONGYUAN</creator><creator>YU JIN</creator><creator>SUN ZHIXIAO</creator><creator>PIAO HAIYIN</creator><creator>HAN YUE</creator><creator>SUN YANG</creator><creator>PENG XUANQI</creator><creator>ZHANG XINHAO</creator><creator>WANG HE</creator><creator>YANG SHENGQI</creator><scope>EVB</scope></search><sort><creationdate>20211130</creationdate><title>Unmanned aerial vehicle continuous maneuver control method based on distributed reinforcement learning</title><author>FAN SONGYUAN ; YU JIN ; SUN ZHIXIAO ; PIAO HAIYIN ; HAN YUE ; SUN YANG ; PENG XUANQI ; ZHANG XINHAO ; WANG HE ; YANG SHENGQI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN113721645A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>CONTROLLING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><topic>REGULATING</topic><topic>SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES</topic><toplevel>online_resources</toplevel><creatorcontrib>FAN SONGYUAN</creatorcontrib><creatorcontrib>YU JIN</creatorcontrib><creatorcontrib>SUN ZHIXIAO</creatorcontrib><creatorcontrib>PIAO HAIYIN</creatorcontrib><creatorcontrib>HAN YUE</creatorcontrib><creatorcontrib>SUN YANG</creatorcontrib><creatorcontrib>PENG XUANQI</creatorcontrib><creatorcontrib>ZHANG XINHAO</creatorcontrib><creatorcontrib>WANG HE</creatorcontrib><creatorcontrib>YANG SHENGQI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>FAN SONGYUAN</au><au>YU JIN</au><au>SUN ZHIXIAO</au><au>PIAO HAIYIN</au><au>HAN YUE</au><au>SUN YANG</au><au>PENG XUANQI</au><au>ZHANG XINHAO</au><au>WANG HE</au><au>YANG SHENGQI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Unmanned aerial vehicle continuous maneuver control method based on distributed reinforcement learning</title><date>2021-11-30</date><risdate>2021</risdate><abstract>The invention relates to the technical field of machine learning, in particular to an unmanned aerial vehicle continuous maneuver control method based on distributed reinforcement learning. The method comprises the steps of constructing a simulation training environment based on unmanned aerial vehicle kinetic parameters; interacting the simulation training environment with a reinforcement learning training system, wherein the reinforcement learning training system is used for carrying out iterative updating on an unmanned aerial vehicle continuous maneuver control strategy neural network, including receiving information of a data experience pool, generating a control strategy through a training algorithm, and controlling an unmanned aerial vehicle to act according to the control strategy, and the data experience pool stores environment information generated by the simulation training environment and unmanned aerial vehicle state information; and sampling the sample data of different random parameters to obta</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN113721645A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING CONTROLLING COUNTING PHYSICS REGULATING SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES |
title | Unmanned aerial vehicle continuous maneuver control method based on distributed reinforcement learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T06%3A53%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=FAN%20SONGYUAN&rft.date=2021-11-30&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN113721645A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |