Unmanned aerial vehicle continuous maneuver control method based on distributed reinforcement learning

The invention relates to the technical field of machine learning, in particular to an unmanned aerial vehicle continuous maneuver control method based on distributed reinforcement learning. The method comprises the steps of constructing a simulation training environment based on unmanned aerial vehi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: FAN SONGYUAN, YU JIN, SUN ZHIXIAO, PIAO HAIYIN, HAN YUE, SUN YANG, PENG XUANQI, ZHANG XINHAO, WANG HE, YANG SHENGQI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator FAN SONGYUAN
YU JIN
SUN ZHIXIAO
PIAO HAIYIN
HAN YUE
SUN YANG
PENG XUANQI
ZHANG XINHAO
WANG HE
YANG SHENGQI
description The invention relates to the technical field of machine learning, in particular to an unmanned aerial vehicle continuous maneuver control method based on distributed reinforcement learning. The method comprises the steps of constructing a simulation training environment based on unmanned aerial vehicle kinetic parameters; interacting the simulation training environment with a reinforcement learning training system, wherein the reinforcement learning training system is used for carrying out iterative updating on an unmanned aerial vehicle continuous maneuver control strategy neural network, including receiving information of a data experience pool, generating a control strategy through a training algorithm, and controlling an unmanned aerial vehicle to act according to the control strategy, and the data experience pool stores environment information generated by the simulation training environment and unmanned aerial vehicle state information; and sampling the sample data of different random parameters to obta
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN113721645A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN113721645A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN113721645A3</originalsourceid><addsrcrecordid>eNqNizsOwjAQBdNQIOAOywEoQvjUKAJRUUEdbZwXYsleR2s75ydCHIDqaUbzlkX_Es8i6Iihlh1NGKxxIBMkWckhR5oD5An6dRoceaQhdNRynH9BqLMxqW1zmlFhpQ9q4CGJHFjFyntdLHp2EZvfrort7fqs7zuMoUEc2UCQmvpRltV5X54Ox0v1T_MB_9hAqQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Unmanned aerial vehicle continuous maneuver control method based on distributed reinforcement learning</title><source>esp@cenet</source><creator>FAN SONGYUAN ; YU JIN ; SUN ZHIXIAO ; PIAO HAIYIN ; HAN YUE ; SUN YANG ; PENG XUANQI ; ZHANG XINHAO ; WANG HE ; YANG SHENGQI</creator><creatorcontrib>FAN SONGYUAN ; YU JIN ; SUN ZHIXIAO ; PIAO HAIYIN ; HAN YUE ; SUN YANG ; PENG XUANQI ; ZHANG XINHAO ; WANG HE ; YANG SHENGQI</creatorcontrib><description>The invention relates to the technical field of machine learning, in particular to an unmanned aerial vehicle continuous maneuver control method based on distributed reinforcement learning. The method comprises the steps of constructing a simulation training environment based on unmanned aerial vehicle kinetic parameters; interacting the simulation training environment with a reinforcement learning training system, wherein the reinforcement learning training system is used for carrying out iterative updating on an unmanned aerial vehicle continuous maneuver control strategy neural network, including receiving information of a data experience pool, generating a control strategy through a training algorithm, and controlling an unmanned aerial vehicle to act according to the control strategy, and the data experience pool stores environment information generated by the simulation training environment and unmanned aerial vehicle state information; and sampling the sample data of different random parameters to obta</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; CONTROLLING ; COUNTING ; PHYSICS ; REGULATING ; SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20211130&amp;DB=EPODOC&amp;CC=CN&amp;NR=113721645A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20211130&amp;DB=EPODOC&amp;CC=CN&amp;NR=113721645A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>FAN SONGYUAN</creatorcontrib><creatorcontrib>YU JIN</creatorcontrib><creatorcontrib>SUN ZHIXIAO</creatorcontrib><creatorcontrib>PIAO HAIYIN</creatorcontrib><creatorcontrib>HAN YUE</creatorcontrib><creatorcontrib>SUN YANG</creatorcontrib><creatorcontrib>PENG XUANQI</creatorcontrib><creatorcontrib>ZHANG XINHAO</creatorcontrib><creatorcontrib>WANG HE</creatorcontrib><creatorcontrib>YANG SHENGQI</creatorcontrib><title>Unmanned aerial vehicle continuous maneuver control method based on distributed reinforcement learning</title><description>The invention relates to the technical field of machine learning, in particular to an unmanned aerial vehicle continuous maneuver control method based on distributed reinforcement learning. The method comprises the steps of constructing a simulation training environment based on unmanned aerial vehicle kinetic parameters; interacting the simulation training environment with a reinforcement learning training system, wherein the reinforcement learning training system is used for carrying out iterative updating on an unmanned aerial vehicle continuous maneuver control strategy neural network, including receiving information of a data experience pool, generating a control strategy through a training algorithm, and controlling an unmanned aerial vehicle to act according to the control strategy, and the data experience pool stores environment information generated by the simulation training environment and unmanned aerial vehicle state information; and sampling the sample data of different random parameters to obta</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>CONTROLLING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><subject>REGULATING</subject><subject>SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNizsOwjAQBdNQIOAOywEoQvjUKAJRUUEdbZwXYsleR2s75ydCHIDqaUbzlkX_Es8i6Iihlh1NGKxxIBMkWckhR5oD5An6dRoceaQhdNRynH9BqLMxqW1zmlFhpQ9q4CGJHFjFyntdLHp2EZvfrort7fqs7zuMoUEc2UCQmvpRltV5X54Ox0v1T_MB_9hAqQ</recordid><startdate>20211130</startdate><enddate>20211130</enddate><creator>FAN SONGYUAN</creator><creator>YU JIN</creator><creator>SUN ZHIXIAO</creator><creator>PIAO HAIYIN</creator><creator>HAN YUE</creator><creator>SUN YANG</creator><creator>PENG XUANQI</creator><creator>ZHANG XINHAO</creator><creator>WANG HE</creator><creator>YANG SHENGQI</creator><scope>EVB</scope></search><sort><creationdate>20211130</creationdate><title>Unmanned aerial vehicle continuous maneuver control method based on distributed reinforcement learning</title><author>FAN SONGYUAN ; YU JIN ; SUN ZHIXIAO ; PIAO HAIYIN ; HAN YUE ; SUN YANG ; PENG XUANQI ; ZHANG XINHAO ; WANG HE ; YANG SHENGQI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN113721645A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>CONTROLLING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><topic>REGULATING</topic><topic>SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES</topic><toplevel>online_resources</toplevel><creatorcontrib>FAN SONGYUAN</creatorcontrib><creatorcontrib>YU JIN</creatorcontrib><creatorcontrib>SUN ZHIXIAO</creatorcontrib><creatorcontrib>PIAO HAIYIN</creatorcontrib><creatorcontrib>HAN YUE</creatorcontrib><creatorcontrib>SUN YANG</creatorcontrib><creatorcontrib>PENG XUANQI</creatorcontrib><creatorcontrib>ZHANG XINHAO</creatorcontrib><creatorcontrib>WANG HE</creatorcontrib><creatorcontrib>YANG SHENGQI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>FAN SONGYUAN</au><au>YU JIN</au><au>SUN ZHIXIAO</au><au>PIAO HAIYIN</au><au>HAN YUE</au><au>SUN YANG</au><au>PENG XUANQI</au><au>ZHANG XINHAO</au><au>WANG HE</au><au>YANG SHENGQI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Unmanned aerial vehicle continuous maneuver control method based on distributed reinforcement learning</title><date>2021-11-30</date><risdate>2021</risdate><abstract>The invention relates to the technical field of machine learning, in particular to an unmanned aerial vehicle continuous maneuver control method based on distributed reinforcement learning. The method comprises the steps of constructing a simulation training environment based on unmanned aerial vehicle kinetic parameters; interacting the simulation training environment with a reinforcement learning training system, wherein the reinforcement learning training system is used for carrying out iterative updating on an unmanned aerial vehicle continuous maneuver control strategy neural network, including receiving information of a data experience pool, generating a control strategy through a training algorithm, and controlling an unmanned aerial vehicle to act according to the control strategy, and the data experience pool stores environment information generated by the simulation training environment and unmanned aerial vehicle state information; and sampling the sample data of different random parameters to obta</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN113721645A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
CONTROLLING
COUNTING
PHYSICS
REGULATING
SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
title Unmanned aerial vehicle continuous maneuver control method based on distributed reinforcement learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T06%3A53%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=FAN%20SONGYUAN&rft.date=2021-11-30&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN113721645A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true