Small-scale face detection method based on generative adversarial network

The invention discloses a small-scale face detection method based on a generative adversarial network, relates to the technical field of face detection, and solves the technical problem of poor precision of an existing small-scale face detection mode. The method comprises the following steps: S1, in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LIANG JIANPING, SHAO QIQI, YANG DASHEN, TIAN ZHONGSHAN, LAI SHAOCHUAN, XIE CHENG, SHAO QI, WANG XIANZHONG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LIANG JIANPING
SHAO QIQI
YANG DASHEN
TIAN ZHONGSHAN
LAI SHAOCHUAN
XIE CHENG
SHAO QI
WANG XIANZHONG
description The invention discloses a small-scale face detection method based on a generative adversarial network, relates to the technical field of face detection, and solves the technical problem of poor precision of an existing small-scale face detection mode. The method comprises the following steps: S1, inputting a noise image and a small face image in real acquisition data into a first generative adversarial network to generate enough small face context region samples; S2, training a face detection network by using the small face context region sample and the small face image; S3, acquiring a workplace image, and acquiring possible small-scale face candidate regions by using the potential face region network; and S4, performing super-resolution reconstruction on the small-scale face candidate region, and inputting the reconstructed small-scale face candidate region into the face detection network to obtain a small face position regression result. According to the method, sufficient small face context region samples
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN113705341A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN113705341A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN113705341A3</originalsourceid><addsrcrecordid>eNqNjDEKAjEUBdNYiHqH7wEWDFGsZVG0sdF--SZvNZhNlvywXt8UHsBqGBhmri63gUNoxHIA9WxBDgW2-BRpQHklRw8WOKr-RETm4icQuwlZOHsOFFE-Kb-XatZzEKx-XKj16Xhvzw3G1EHG-q5l1161NvvNzmz1wfzTfAHdqzS9</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Small-scale face detection method based on generative adversarial network</title><source>esp@cenet</source><creator>LIANG JIANPING ; SHAO QIQI ; YANG DASHEN ; TIAN ZHONGSHAN ; LAI SHAOCHUAN ; XIE CHENG ; SHAO QI ; WANG XIANZHONG</creator><creatorcontrib>LIANG JIANPING ; SHAO QIQI ; YANG DASHEN ; TIAN ZHONGSHAN ; LAI SHAOCHUAN ; XIE CHENG ; SHAO QI ; WANG XIANZHONG</creatorcontrib><description>The invention discloses a small-scale face detection method based on a generative adversarial network, relates to the technical field of face detection, and solves the technical problem of poor precision of an existing small-scale face detection mode. The method comprises the following steps: S1, inputting a noise image and a small face image in real acquisition data into a first generative adversarial network to generate enough small face context region samples; S2, training a face detection network by using the small face context region sample and the small face image; S3, acquiring a workplace image, and acquiring possible small-scale face candidate regions by using the potential face region network; and S4, performing super-resolution reconstruction on the small-scale face candidate region, and inputting the reconstructed small-scale face candidate region into the face detection network to obtain a small face position regression result. According to the method, sufficient small face context region samples</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20211126&amp;DB=EPODOC&amp;CC=CN&amp;NR=113705341A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20211126&amp;DB=EPODOC&amp;CC=CN&amp;NR=113705341A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LIANG JIANPING</creatorcontrib><creatorcontrib>SHAO QIQI</creatorcontrib><creatorcontrib>YANG DASHEN</creatorcontrib><creatorcontrib>TIAN ZHONGSHAN</creatorcontrib><creatorcontrib>LAI SHAOCHUAN</creatorcontrib><creatorcontrib>XIE CHENG</creatorcontrib><creatorcontrib>SHAO QI</creatorcontrib><creatorcontrib>WANG XIANZHONG</creatorcontrib><title>Small-scale face detection method based on generative adversarial network</title><description>The invention discloses a small-scale face detection method based on a generative adversarial network, relates to the technical field of face detection, and solves the technical problem of poor precision of an existing small-scale face detection mode. The method comprises the following steps: S1, inputting a noise image and a small face image in real acquisition data into a first generative adversarial network to generate enough small face context region samples; S2, training a face detection network by using the small face context region sample and the small face image; S3, acquiring a workplace image, and acquiring possible small-scale face candidate regions by using the potential face region network; and S4, performing super-resolution reconstruction on the small-scale face candidate region, and inputting the reconstructed small-scale face candidate region into the face detection network to obtain a small face position regression result. According to the method, sufficient small face context region samples</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjDEKAjEUBdNYiHqH7wEWDFGsZVG0sdF--SZvNZhNlvywXt8UHsBqGBhmri63gUNoxHIA9WxBDgW2-BRpQHklRw8WOKr-RETm4icQuwlZOHsOFFE-Kb-XatZzEKx-XKj16Xhvzw3G1EHG-q5l1161NvvNzmz1wfzTfAHdqzS9</recordid><startdate>20211126</startdate><enddate>20211126</enddate><creator>LIANG JIANPING</creator><creator>SHAO QIQI</creator><creator>YANG DASHEN</creator><creator>TIAN ZHONGSHAN</creator><creator>LAI SHAOCHUAN</creator><creator>XIE CHENG</creator><creator>SHAO QI</creator><creator>WANG XIANZHONG</creator><scope>EVB</scope></search><sort><creationdate>20211126</creationdate><title>Small-scale face detection method based on generative adversarial network</title><author>LIANG JIANPING ; SHAO QIQI ; YANG DASHEN ; TIAN ZHONGSHAN ; LAI SHAOCHUAN ; XIE CHENG ; SHAO QI ; WANG XIANZHONG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN113705341A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>LIANG JIANPING</creatorcontrib><creatorcontrib>SHAO QIQI</creatorcontrib><creatorcontrib>YANG DASHEN</creatorcontrib><creatorcontrib>TIAN ZHONGSHAN</creatorcontrib><creatorcontrib>LAI SHAOCHUAN</creatorcontrib><creatorcontrib>XIE CHENG</creatorcontrib><creatorcontrib>SHAO QI</creatorcontrib><creatorcontrib>WANG XIANZHONG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LIANG JIANPING</au><au>SHAO QIQI</au><au>YANG DASHEN</au><au>TIAN ZHONGSHAN</au><au>LAI SHAOCHUAN</au><au>XIE CHENG</au><au>SHAO QI</au><au>WANG XIANZHONG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Small-scale face detection method based on generative adversarial network</title><date>2021-11-26</date><risdate>2021</risdate><abstract>The invention discloses a small-scale face detection method based on a generative adversarial network, relates to the technical field of face detection, and solves the technical problem of poor precision of an existing small-scale face detection mode. The method comprises the following steps: S1, inputting a noise image and a small face image in real acquisition data into a first generative adversarial network to generate enough small face context region samples; S2, training a face detection network by using the small face context region sample and the small face image; S3, acquiring a workplace image, and acquiring possible small-scale face candidate regions by using the potential face region network; and S4, performing super-resolution reconstruction on the small-scale face candidate region, and inputting the reconstructed small-scale face candidate region into the face detection network to obtain a small face position regression result. According to the method, sufficient small face context region samples</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN113705341A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title Small-scale face detection method based on generative adversarial network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T17%3A38%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LIANG%20JIANPING&rft.date=2021-11-26&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN113705341A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true