Cut tobacco drying process parameter selection method based on particle swarm optimization neural network

The invention discloses a cut tobacco drying process parameter selection method based on a particle swarm optimization neural network, and the method comprises the following steps: collecting cut tobacco drying process parameters to construct sample data, each sample comprising a group of cut tobacc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: YE ZHIHUI, XU YUANGEN, SHI DINGKE, WANG LIUJING, QIAN JIE
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator YE ZHIHUI
XU YUANGEN
SHI DINGKE
WANG LIUJING
QIAN JIE
description The invention discloses a cut tobacco drying process parameter selection method based on a particle swarm optimization neural network, and the method comprises the following steps: collecting cut tobacco drying process parameters to construct sample data, each sample comprising a group of cut tobacco drying process parameters and a cut tobacco quality probability corresponding to the group of process parameters; constructing a neural network, optimizing network parameters of the neural network by utilizing sample data, during optimization, initializing the network parameters into particle individuals, taking prediction errors of samples as individual fitness, optimizing the network parameters by adopting a particle swarm optimization algorithm, and taking the neural network with determined parameters as a process parameter selection model; and selecting cut tobacco drying process parameters by using the process parameter selection model. The method can quickly and accurately select the process parameters capa
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN113673679A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN113673679A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN113673679A3</originalsourceid><addsrcrecordid>eNqNykEKwkAMheFuXIh6h3gAF6WguJSiuHLlvqQzUQdnmiFJKXp6B_EAwoOfB9-8Cu1oYNyjcwxeXmG4QxZ2pAoZBRMZCShFchZ4gPIf7KFHJQ_lF2PBRQKdUBJwtpDCG792oFEwltjE8lxWsxtGpdWvi2p9Ol7b84Yyd6QZHRXZtZe6bra7sv2h-cd8ALiAQbM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Cut tobacco drying process parameter selection method based on particle swarm optimization neural network</title><source>esp@cenet</source><creator>YE ZHIHUI ; XU YUANGEN ; SHI DINGKE ; WANG LIUJING ; QIAN JIE</creator><creatorcontrib>YE ZHIHUI ; XU YUANGEN ; SHI DINGKE ; WANG LIUJING ; QIAN JIE</creatorcontrib><description>The invention discloses a cut tobacco drying process parameter selection method based on a particle swarm optimization neural network, and the method comprises the following steps: collecting cut tobacco drying process parameters to construct sample data, each sample comprising a group of cut tobacco drying process parameters and a cut tobacco quality probability corresponding to the group of process parameters; constructing a neural network, optimizing network parameters of the neural network by utilizing sample data, during optimization, initializing the network parameters into particle individuals, taking prediction errors of samples as individual fitness, optimizing the network parameters by adopting a particle swarm optimization algorithm, and taking the neural network with determined parameters as a process parameter selection model; and selecting cut tobacco drying process parameters by using the process parameter selection model. The method can quickly and accurately select the process parameters capa</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20211119&amp;DB=EPODOC&amp;CC=CN&amp;NR=113673679A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20211119&amp;DB=EPODOC&amp;CC=CN&amp;NR=113673679A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>YE ZHIHUI</creatorcontrib><creatorcontrib>XU YUANGEN</creatorcontrib><creatorcontrib>SHI DINGKE</creatorcontrib><creatorcontrib>WANG LIUJING</creatorcontrib><creatorcontrib>QIAN JIE</creatorcontrib><title>Cut tobacco drying process parameter selection method based on particle swarm optimization neural network</title><description>The invention discloses a cut tobacco drying process parameter selection method based on a particle swarm optimization neural network, and the method comprises the following steps: collecting cut tobacco drying process parameters to construct sample data, each sample comprising a group of cut tobacco drying process parameters and a cut tobacco quality probability corresponding to the group of process parameters; constructing a neural network, optimizing network parameters of the neural network by utilizing sample data, during optimization, initializing the network parameters into particle individuals, taking prediction errors of samples as individual fitness, optimizing the network parameters by adopting a particle swarm optimization algorithm, and taking the neural network with determined parameters as a process parameter selection model; and selecting cut tobacco drying process parameters by using the process parameter selection model. The method can quickly and accurately select the process parameters capa</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNykEKwkAMheFuXIh6h3gAF6WguJSiuHLlvqQzUQdnmiFJKXp6B_EAwoOfB9-8Cu1oYNyjcwxeXmG4QxZ2pAoZBRMZCShFchZ4gPIf7KFHJQ_lF2PBRQKdUBJwtpDCG792oFEwltjE8lxWsxtGpdWvi2p9Ol7b84Yyd6QZHRXZtZe6bra7sv2h-cd8ALiAQbM</recordid><startdate>20211119</startdate><enddate>20211119</enddate><creator>YE ZHIHUI</creator><creator>XU YUANGEN</creator><creator>SHI DINGKE</creator><creator>WANG LIUJING</creator><creator>QIAN JIE</creator><scope>EVB</scope></search><sort><creationdate>20211119</creationdate><title>Cut tobacco drying process parameter selection method based on particle swarm optimization neural network</title><author>YE ZHIHUI ; XU YUANGEN ; SHI DINGKE ; WANG LIUJING ; QIAN JIE</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN113673679A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>YE ZHIHUI</creatorcontrib><creatorcontrib>XU YUANGEN</creatorcontrib><creatorcontrib>SHI DINGKE</creatorcontrib><creatorcontrib>WANG LIUJING</creatorcontrib><creatorcontrib>QIAN JIE</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>YE ZHIHUI</au><au>XU YUANGEN</au><au>SHI DINGKE</au><au>WANG LIUJING</au><au>QIAN JIE</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Cut tobacco drying process parameter selection method based on particle swarm optimization neural network</title><date>2021-11-19</date><risdate>2021</risdate><abstract>The invention discloses a cut tobacco drying process parameter selection method based on a particle swarm optimization neural network, and the method comprises the following steps: collecting cut tobacco drying process parameters to construct sample data, each sample comprising a group of cut tobacco drying process parameters and a cut tobacco quality probability corresponding to the group of process parameters; constructing a neural network, optimizing network parameters of the neural network by utilizing sample data, during optimization, initializing the network parameters into particle individuals, taking prediction errors of samples as individual fitness, optimizing the network parameters by adopting a particle swarm optimization algorithm, and taking the neural network with determined parameters as a process parameter selection model; and selecting cut tobacco drying process parameters by using the process parameter selection model. The method can quickly and accurately select the process parameters capa</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN113673679A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title Cut tobacco drying process parameter selection method based on particle swarm optimization neural network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T09%3A34%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=YE%20ZHIHUI&rft.date=2021-11-19&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN113673679A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true