Industrial control intrusion detection system and method based on convolutional neural network architecture optimization

The invention discloses an industrial control intrusion detection system and method based on convolutional neural network architecture optimization. Historical monitoring data of a generation process are collected from a historical database of an industrial control system, the historical monitoring...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: WENG JIAN, TAN WUZHENG, LU KANGDI, ZENG GUOQIANG, HUANG JIACHENG, GENG GUANGGANG, ZHANG YU
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator WENG JIAN
TAN WUZHENG
LU KANGDI
ZENG GUOQIANG
HUANG JIACHENG
GENG GUANGGANG
ZHANG YU
description The invention discloses an industrial control intrusion detection system and method based on convolutional neural network architecture optimization. Historical monitoring data of a generation process are collected from a historical database of an industrial control system, the historical monitoring data are subjected to data analysis and normalization and then serve as an input data set of an industrial control intrusion detection offline training module, and a convolutional neural network architecture optimization platform based on a discrete population evolution method is designed; an industrial control intrusion detection feature library and a convolutional neural network model of an optimal architecture are obtained, and online detection of industrial control intrusion detection is realized for real-time monitoring data in a real-time database of the industrial control system. According to the invention, automatic generation and optimization design of a convolutional neural network architecture for an ind
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN113591078A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN113591078A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN113591078A3</originalsourceid><addsrcrecordid>eNqNjE0KwjAQRrtxIeodxgMIliLapRRFN67cl5iMNJhmSmbi3-lNxAO4egPzvjcunkdvIkuwyoEmL4Ec2ITIljwYFNSSL36xYA_KG-hROjJwUYwG0ivN7uRi1lLEYwxfyIPCDVTQnc2RGBBoENvbt8rqtBhdlWOc_Tgp5vvduTkscKAWeVAaU6NtTmVZrepyud5sq3-cD9N1SEw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Industrial control intrusion detection system and method based on convolutional neural network architecture optimization</title><source>esp@cenet</source><creator>WENG JIAN ; TAN WUZHENG ; LU KANGDI ; ZENG GUOQIANG ; HUANG JIACHENG ; GENG GUANGGANG ; ZHANG YU</creator><creatorcontrib>WENG JIAN ; TAN WUZHENG ; LU KANGDI ; ZENG GUOQIANG ; HUANG JIACHENG ; GENG GUANGGANG ; ZHANG YU</creatorcontrib><description>The invention discloses an industrial control intrusion detection system and method based on convolutional neural network architecture optimization. Historical monitoring data of a generation process are collected from a historical database of an industrial control system, the historical monitoring data are subjected to data analysis and normalization and then serve as an input data set of an industrial control intrusion detection offline training module, and a convolutional neural network architecture optimization platform based on a discrete population evolution method is designed; an industrial control intrusion detection feature library and a convolutional neural network model of an optimal architecture are obtained, and online detection of industrial control intrusion detection is realized for real-time monitoring data in a real-time database of the industrial control system. According to the invention, automatic generation and optimization design of a convolutional neural network architecture for an ind</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20211102&amp;DB=EPODOC&amp;CC=CN&amp;NR=113591078A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20211102&amp;DB=EPODOC&amp;CC=CN&amp;NR=113591078A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WENG JIAN</creatorcontrib><creatorcontrib>TAN WUZHENG</creatorcontrib><creatorcontrib>LU KANGDI</creatorcontrib><creatorcontrib>ZENG GUOQIANG</creatorcontrib><creatorcontrib>HUANG JIACHENG</creatorcontrib><creatorcontrib>GENG GUANGGANG</creatorcontrib><creatorcontrib>ZHANG YU</creatorcontrib><title>Industrial control intrusion detection system and method based on convolutional neural network architecture optimization</title><description>The invention discloses an industrial control intrusion detection system and method based on convolutional neural network architecture optimization. Historical monitoring data of a generation process are collected from a historical database of an industrial control system, the historical monitoring data are subjected to data analysis and normalization and then serve as an input data set of an industrial control intrusion detection offline training module, and a convolutional neural network architecture optimization platform based on a discrete population evolution method is designed; an industrial control intrusion detection feature library and a convolutional neural network model of an optimal architecture are obtained, and online detection of industrial control intrusion detection is realized for real-time monitoring data in a real-time database of the industrial control system. According to the invention, automatic generation and optimization design of a convolutional neural network architecture for an ind</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjE0KwjAQRrtxIeodxgMIliLapRRFN67cl5iMNJhmSmbi3-lNxAO4egPzvjcunkdvIkuwyoEmL4Ec2ITIljwYFNSSL36xYA_KG-hROjJwUYwG0ivN7uRi1lLEYwxfyIPCDVTQnc2RGBBoENvbt8rqtBhdlWOc_Tgp5vvduTkscKAWeVAaU6NtTmVZrepyud5sq3-cD9N1SEw</recordid><startdate>20211102</startdate><enddate>20211102</enddate><creator>WENG JIAN</creator><creator>TAN WUZHENG</creator><creator>LU KANGDI</creator><creator>ZENG GUOQIANG</creator><creator>HUANG JIACHENG</creator><creator>GENG GUANGGANG</creator><creator>ZHANG YU</creator><scope>EVB</scope></search><sort><creationdate>20211102</creationdate><title>Industrial control intrusion detection system and method based on convolutional neural network architecture optimization</title><author>WENG JIAN ; TAN WUZHENG ; LU KANGDI ; ZENG GUOQIANG ; HUANG JIACHENG ; GENG GUANGGANG ; ZHANG YU</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN113591078A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>WENG JIAN</creatorcontrib><creatorcontrib>TAN WUZHENG</creatorcontrib><creatorcontrib>LU KANGDI</creatorcontrib><creatorcontrib>ZENG GUOQIANG</creatorcontrib><creatorcontrib>HUANG JIACHENG</creatorcontrib><creatorcontrib>GENG GUANGGANG</creatorcontrib><creatorcontrib>ZHANG YU</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WENG JIAN</au><au>TAN WUZHENG</au><au>LU KANGDI</au><au>ZENG GUOQIANG</au><au>HUANG JIACHENG</au><au>GENG GUANGGANG</au><au>ZHANG YU</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Industrial control intrusion detection system and method based on convolutional neural network architecture optimization</title><date>2021-11-02</date><risdate>2021</risdate><abstract>The invention discloses an industrial control intrusion detection system and method based on convolutional neural network architecture optimization. Historical monitoring data of a generation process are collected from a historical database of an industrial control system, the historical monitoring data are subjected to data analysis and normalization and then serve as an input data set of an industrial control intrusion detection offline training module, and a convolutional neural network architecture optimization platform based on a discrete population evolution method is designed; an industrial control intrusion detection feature library and a convolutional neural network model of an optimal architecture are obtained, and online detection of industrial control intrusion detection is realized for real-time monitoring data in a real-time database of the industrial control system. According to the invention, automatic generation and optimization design of a convolutional neural network architecture for an ind</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN113591078A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Industrial control intrusion detection system and method based on convolutional neural network architecture optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T03%3A05%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WENG%20JIAN&rft.date=2021-11-02&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN113591078A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true