Multispectral image compression method and system based on multidirectional convolutional neural network
The invention discloses a multispectral image compression method and system based on a multidirectional convolutional neural network. The system comprises a forward coding network, a quantization module, an entropy coding module, an entropy decoding module, an inverse quantization module and a rever...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | CAO TONGBO KONG FANQIANG ZHANG NING HU KEDI |
description | The invention discloses a multispectral image compression method and system based on a multidirectional convolutional neural network. The system comprises a forward coding network, a quantization module, an entropy coding module, an entropy decoding module, an inverse quantization module and a reverse decoding network. The method specifically comprises the following steps: constructing a multispectral image compression network and training the multispectral image compression network to obtain an optimal multispectral image compression network model; sending a to-be-compressed multispectral image into a multispectral image compression network, extracting inter-spectral spatial features of the image through multidirectional convolution, reducing the size of a feature map through downsampling after dimension reduction fusion, removing data redundancy through quantization, and obtaining a compressed code stream used for transmission and storage through lossless entropy coding; and performing entropy decoding and |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN113554720A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN113554720A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN113554720A3</originalsourceid><addsrcrecordid>eNqNi0EKwjAQRbNxIeodxgMI1lpcS1Hc6Mp9iclog0kmZBLF25tKD-Dq8fnvTUV_zjYZDqhSlBaMkw8ERS5EZDbkwWHqSYP0GvjDCR3cJKOG4RpSbWJpi1lqRf5FNo_LY44_pDfF51xM7tIyLkbOxPJ4uLanFQbqkINUWMyuvVRV3TTb3Wa9r_9xvs27QdE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Multispectral image compression method and system based on multidirectional convolutional neural network</title><source>esp@cenet</source><creator>CAO TONGBO ; KONG FANQIANG ; ZHANG NING ; HU KEDI</creator><creatorcontrib>CAO TONGBO ; KONG FANQIANG ; ZHANG NING ; HU KEDI</creatorcontrib><description>The invention discloses a multispectral image compression method and system based on a multidirectional convolutional neural network. The system comprises a forward coding network, a quantization module, an entropy coding module, an entropy decoding module, an inverse quantization module and a reverse decoding network. The method specifically comprises the following steps: constructing a multispectral image compression network and training the multispectral image compression network to obtain an optimal multispectral image compression network model; sending a to-be-compressed multispectral image into a multispectral image compression network, extracting inter-spectral spatial features of the image through multidirectional convolution, reducing the size of a feature map through downsampling after dimension reduction fusion, removing data redundancy through quantization, and obtaining a compressed code stream used for transmission and storage through lossless entropy coding; and performing entropy decoding and</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20211026&DB=EPODOC&CC=CN&NR=113554720A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20211026&DB=EPODOC&CC=CN&NR=113554720A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>CAO TONGBO</creatorcontrib><creatorcontrib>KONG FANQIANG</creatorcontrib><creatorcontrib>ZHANG NING</creatorcontrib><creatorcontrib>HU KEDI</creatorcontrib><title>Multispectral image compression method and system based on multidirectional convolutional neural network</title><description>The invention discloses a multispectral image compression method and system based on a multidirectional convolutional neural network. The system comprises a forward coding network, a quantization module, an entropy coding module, an entropy decoding module, an inverse quantization module and a reverse decoding network. The method specifically comprises the following steps: constructing a multispectral image compression network and training the multispectral image compression network to obtain an optimal multispectral image compression network model; sending a to-be-compressed multispectral image into a multispectral image compression network, extracting inter-spectral spatial features of the image through multidirectional convolution, reducing the size of a feature map through downsampling after dimension reduction fusion, removing data redundancy through quantization, and obtaining a compressed code stream used for transmission and storage through lossless entropy coding; and performing entropy decoding and</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNi0EKwjAQRbNxIeodxgMI1lpcS1Hc6Mp9iclog0kmZBLF25tKD-Dq8fnvTUV_zjYZDqhSlBaMkw8ERS5EZDbkwWHqSYP0GvjDCR3cJKOG4RpSbWJpi1lqRf5FNo_LY44_pDfF51xM7tIyLkbOxPJ4uLanFQbqkINUWMyuvVRV3TTb3Wa9r_9xvs27QdE</recordid><startdate>20211026</startdate><enddate>20211026</enddate><creator>CAO TONGBO</creator><creator>KONG FANQIANG</creator><creator>ZHANG NING</creator><creator>HU KEDI</creator><scope>EVB</scope></search><sort><creationdate>20211026</creationdate><title>Multispectral image compression method and system based on multidirectional convolutional neural network</title><author>CAO TONGBO ; KONG FANQIANG ; ZHANG NING ; HU KEDI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN113554720A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>CAO TONGBO</creatorcontrib><creatorcontrib>KONG FANQIANG</creatorcontrib><creatorcontrib>ZHANG NING</creatorcontrib><creatorcontrib>HU KEDI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>CAO TONGBO</au><au>KONG FANQIANG</au><au>ZHANG NING</au><au>HU KEDI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Multispectral image compression method and system based on multidirectional convolutional neural network</title><date>2021-10-26</date><risdate>2021</risdate><abstract>The invention discloses a multispectral image compression method and system based on a multidirectional convolutional neural network. The system comprises a forward coding network, a quantization module, an entropy coding module, an entropy decoding module, an inverse quantization module and a reverse decoding network. The method specifically comprises the following steps: constructing a multispectral image compression network and training the multispectral image compression network to obtain an optimal multispectral image compression network model; sending a to-be-compressed multispectral image into a multispectral image compression network, extracting inter-spectral spatial features of the image through multidirectional convolution, reducing the size of a feature map through downsampling after dimension reduction fusion, removing data redundancy through quantization, and obtaining a compressed code stream used for transmission and storage through lossless entropy coding; and performing entropy decoding and</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN113554720A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING HANDLING RECORD CARRIERS IMAGE DATA PROCESSING OR GENERATION, IN GENERAL PHYSICS PRESENTATION OF DATA RECOGNITION OF DATA RECORD CARRIERS |
title | Multispectral image compression method and system based on multidirectional convolutional neural network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T18%3A21%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=CAO%20TONGBO&rft.date=2021-10-26&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN113554720A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |