Multispectral image compression method and system based on multidirectional convolutional neural network

The invention discloses a multispectral image compression method and system based on a multidirectional convolutional neural network. The system comprises a forward coding network, a quantization module, an entropy coding module, an entropy decoding module, an inverse quantization module and a rever...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: CAO TONGBO, KONG FANQIANG, ZHANG NING, HU KEDI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator CAO TONGBO
KONG FANQIANG
ZHANG NING
HU KEDI
description The invention discloses a multispectral image compression method and system based on a multidirectional convolutional neural network. The system comprises a forward coding network, a quantization module, an entropy coding module, an entropy decoding module, an inverse quantization module and a reverse decoding network. The method specifically comprises the following steps: constructing a multispectral image compression network and training the multispectral image compression network to obtain an optimal multispectral image compression network model; sending a to-be-compressed multispectral image into a multispectral image compression network, extracting inter-spectral spatial features of the image through multidirectional convolution, reducing the size of a feature map through downsampling after dimension reduction fusion, removing data redundancy through quantization, and obtaining a compressed code stream used for transmission and storage through lossless entropy coding; and performing entropy decoding and
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN113554720A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN113554720A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN113554720A3</originalsourceid><addsrcrecordid>eNqNi0EKwjAQRbNxIeodxgMI1lpcS1Hc6Mp9iclog0kmZBLF25tKD-Dq8fnvTUV_zjYZDqhSlBaMkw8ERS5EZDbkwWHqSYP0GvjDCR3cJKOG4RpSbWJpi1lqRf5FNo_LY44_pDfF51xM7tIyLkbOxPJ4uLanFQbqkINUWMyuvVRV3TTb3Wa9r_9xvs27QdE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Multispectral image compression method and system based on multidirectional convolutional neural network</title><source>esp@cenet</source><creator>CAO TONGBO ; KONG FANQIANG ; ZHANG NING ; HU KEDI</creator><creatorcontrib>CAO TONGBO ; KONG FANQIANG ; ZHANG NING ; HU KEDI</creatorcontrib><description>The invention discloses a multispectral image compression method and system based on a multidirectional convolutional neural network. The system comprises a forward coding network, a quantization module, an entropy coding module, an entropy decoding module, an inverse quantization module and a reverse decoding network. The method specifically comprises the following steps: constructing a multispectral image compression network and training the multispectral image compression network to obtain an optimal multispectral image compression network model; sending a to-be-compressed multispectral image into a multispectral image compression network, extracting inter-spectral spatial features of the image through multidirectional convolution, reducing the size of a feature map through downsampling after dimension reduction fusion, removing data redundancy through quantization, and obtaining a compressed code stream used for transmission and storage through lossless entropy coding; and performing entropy decoding and</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20211026&amp;DB=EPODOC&amp;CC=CN&amp;NR=113554720A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20211026&amp;DB=EPODOC&amp;CC=CN&amp;NR=113554720A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>CAO TONGBO</creatorcontrib><creatorcontrib>KONG FANQIANG</creatorcontrib><creatorcontrib>ZHANG NING</creatorcontrib><creatorcontrib>HU KEDI</creatorcontrib><title>Multispectral image compression method and system based on multidirectional convolutional neural network</title><description>The invention discloses a multispectral image compression method and system based on a multidirectional convolutional neural network. The system comprises a forward coding network, a quantization module, an entropy coding module, an entropy decoding module, an inverse quantization module and a reverse decoding network. The method specifically comprises the following steps: constructing a multispectral image compression network and training the multispectral image compression network to obtain an optimal multispectral image compression network model; sending a to-be-compressed multispectral image into a multispectral image compression network, extracting inter-spectral spatial features of the image through multidirectional convolution, reducing the size of a feature map through downsampling after dimension reduction fusion, removing data redundancy through quantization, and obtaining a compressed code stream used for transmission and storage through lossless entropy coding; and performing entropy decoding and</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNi0EKwjAQRbNxIeodxgMI1lpcS1Hc6Mp9iclog0kmZBLF25tKD-Dq8fnvTUV_zjYZDqhSlBaMkw8ERS5EZDbkwWHqSYP0GvjDCR3cJKOG4RpSbWJpi1lqRf5FNo_LY44_pDfF51xM7tIyLkbOxPJ4uLanFQbqkINUWMyuvVRV3TTb3Wa9r_9xvs27QdE</recordid><startdate>20211026</startdate><enddate>20211026</enddate><creator>CAO TONGBO</creator><creator>KONG FANQIANG</creator><creator>ZHANG NING</creator><creator>HU KEDI</creator><scope>EVB</scope></search><sort><creationdate>20211026</creationdate><title>Multispectral image compression method and system based on multidirectional convolutional neural network</title><author>CAO TONGBO ; KONG FANQIANG ; ZHANG NING ; HU KEDI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN113554720A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>CAO TONGBO</creatorcontrib><creatorcontrib>KONG FANQIANG</creatorcontrib><creatorcontrib>ZHANG NING</creatorcontrib><creatorcontrib>HU KEDI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>CAO TONGBO</au><au>KONG FANQIANG</au><au>ZHANG NING</au><au>HU KEDI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Multispectral image compression method and system based on multidirectional convolutional neural network</title><date>2021-10-26</date><risdate>2021</risdate><abstract>The invention discloses a multispectral image compression method and system based on a multidirectional convolutional neural network. The system comprises a forward coding network, a quantization module, an entropy coding module, an entropy decoding module, an inverse quantization module and a reverse decoding network. The method specifically comprises the following steps: constructing a multispectral image compression network and training the multispectral image compression network to obtain an optimal multispectral image compression network model; sending a to-be-compressed multispectral image into a multispectral image compression network, extracting inter-spectral spatial features of the image through multidirectional convolution, reducing the size of a feature map through downsampling after dimension reduction fusion, removing data redundancy through quantization, and obtaining a compressed code stream used for transmission and storage through lossless entropy coding; and performing entropy decoding and</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN113554720A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
HANDLING RECORD CARRIERS
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title Multispectral image compression method and system based on multidirectional convolutional neural network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T18%3A21%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=CAO%20TONGBO&rft.date=2021-10-26&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN113554720A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true