Rapid identification method for grapefruit diseases and insect pests

A rapid identification method for grapefruit diseases and insect pests comprises the following steps: collecting pictures of various grapefruit diseases and insect pests, adopting LabelImg to label the diseases and insect pests in the pictures according to the types of the diseases and insect pests,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: SHI ZECHEN, HE JIEFENG, YANG LING, BAI WEIDONG, ZOU JUAN, SHI YUQIANG, CHEN NINGXIA
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator SHI ZECHEN
HE JIEFENG
YANG LING
BAI WEIDONG
ZOU JUAN
SHI YUQIANG
CHEN NINGXIA
description A rapid identification method for grapefruit diseases and insect pests comprises the following steps: collecting pictures of various grapefruit diseases and insect pests, adopting LabelImg to label the diseases and insect pests in the pictures according to the types of the diseases and insect pests, and obtaining a training data set and a verification data set; inputting the pictures in the training set and the verification set into a YOLOv5x network model for model training to obtain optimal weight data of the YOLOv5x network model; and loading the optimal weight data into the YOLOv5x network model, inputting a to-be-identified picture, and outputting an identified disease and pest category. According to the method, the grapefruit disease and insect pest pictures capable of covering almost all categories are collected as the data set of the training prediction model, the practicability of target detection is improved, the purposes of rapid identification and prediction are achieved by adopting the YOLOv5 net
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN113538390A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN113538390A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN113538390A3</originalsourceid><addsrcrecordid>eNqNyzEKAjEQRuE0FqLeYfYAgksQtJRdxcpC7Jch-aMDmoTMeH8tPIDVa743d-OVq0SSiGySJLBJyfSCPUqkVBrdG1ek9hajKApWKHH-HlkRjCrUdOlmiZ-K1a8L152Ot-G8Ri0TtHJAhk3Dpe_91u_8fnPw_5gP3UQzIQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Rapid identification method for grapefruit diseases and insect pests</title><source>esp@cenet</source><creator>SHI ZECHEN ; HE JIEFENG ; YANG LING ; BAI WEIDONG ; ZOU JUAN ; SHI YUQIANG ; CHEN NINGXIA</creator><creatorcontrib>SHI ZECHEN ; HE JIEFENG ; YANG LING ; BAI WEIDONG ; ZOU JUAN ; SHI YUQIANG ; CHEN NINGXIA</creatorcontrib><description>A rapid identification method for grapefruit diseases and insect pests comprises the following steps: collecting pictures of various grapefruit diseases and insect pests, adopting LabelImg to label the diseases and insect pests in the pictures according to the types of the diseases and insect pests, and obtaining a training data set and a verification data set; inputting the pictures in the training set and the verification set into a YOLOv5x network model for model training to obtain optimal weight data of the YOLOv5x network model; and loading the optimal weight data into the YOLOv5x network model, inputting a to-be-identified picture, and outputting an identified disease and pest category. According to the method, the grapefruit disease and insect pest pictures capable of covering almost all categories are collected as the data set of the training prediction model, the practicability of target detection is improved, the purposes of rapid identification and prediction are achieved by adopting the YOLOv5 net</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20211022&amp;DB=EPODOC&amp;CC=CN&amp;NR=113538390A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20211022&amp;DB=EPODOC&amp;CC=CN&amp;NR=113538390A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>SHI ZECHEN</creatorcontrib><creatorcontrib>HE JIEFENG</creatorcontrib><creatorcontrib>YANG LING</creatorcontrib><creatorcontrib>BAI WEIDONG</creatorcontrib><creatorcontrib>ZOU JUAN</creatorcontrib><creatorcontrib>SHI YUQIANG</creatorcontrib><creatorcontrib>CHEN NINGXIA</creatorcontrib><title>Rapid identification method for grapefruit diseases and insect pests</title><description>A rapid identification method for grapefruit diseases and insect pests comprises the following steps: collecting pictures of various grapefruit diseases and insect pests, adopting LabelImg to label the diseases and insect pests in the pictures according to the types of the diseases and insect pests, and obtaining a training data set and a verification data set; inputting the pictures in the training set and the verification set into a YOLOv5x network model for model training to obtain optimal weight data of the YOLOv5x network model; and loading the optimal weight data into the YOLOv5x network model, inputting a to-be-identified picture, and outputting an identified disease and pest category. According to the method, the grapefruit disease and insect pest pictures capable of covering almost all categories are collected as the data set of the training prediction model, the practicability of target detection is improved, the purposes of rapid identification and prediction are achieved by adopting the YOLOv5 net</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyzEKAjEQRuE0FqLeYfYAgksQtJRdxcpC7Jch-aMDmoTMeH8tPIDVa743d-OVq0SSiGySJLBJyfSCPUqkVBrdG1ek9hajKApWKHH-HlkRjCrUdOlmiZ-K1a8L152Ot-G8Ri0TtHJAhk3Dpe_91u_8fnPw_5gP3UQzIQ</recordid><startdate>20211022</startdate><enddate>20211022</enddate><creator>SHI ZECHEN</creator><creator>HE JIEFENG</creator><creator>YANG LING</creator><creator>BAI WEIDONG</creator><creator>ZOU JUAN</creator><creator>SHI YUQIANG</creator><creator>CHEN NINGXIA</creator><scope>EVB</scope></search><sort><creationdate>20211022</creationdate><title>Rapid identification method for grapefruit diseases and insect pests</title><author>SHI ZECHEN ; HE JIEFENG ; YANG LING ; BAI WEIDONG ; ZOU JUAN ; SHI YUQIANG ; CHEN NINGXIA</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN113538390A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>SHI ZECHEN</creatorcontrib><creatorcontrib>HE JIEFENG</creatorcontrib><creatorcontrib>YANG LING</creatorcontrib><creatorcontrib>BAI WEIDONG</creatorcontrib><creatorcontrib>ZOU JUAN</creatorcontrib><creatorcontrib>SHI YUQIANG</creatorcontrib><creatorcontrib>CHEN NINGXIA</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>SHI ZECHEN</au><au>HE JIEFENG</au><au>YANG LING</au><au>BAI WEIDONG</au><au>ZOU JUAN</au><au>SHI YUQIANG</au><au>CHEN NINGXIA</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Rapid identification method for grapefruit diseases and insect pests</title><date>2021-10-22</date><risdate>2021</risdate><abstract>A rapid identification method for grapefruit diseases and insect pests comprises the following steps: collecting pictures of various grapefruit diseases and insect pests, adopting LabelImg to label the diseases and insect pests in the pictures according to the types of the diseases and insect pests, and obtaining a training data set and a verification data set; inputting the pictures in the training set and the verification set into a YOLOv5x network model for model training to obtain optimal weight data of the YOLOv5x network model; and loading the optimal weight data into the YOLOv5x network model, inputting a to-be-identified picture, and outputting an identified disease and pest category. According to the method, the grapefruit disease and insect pest pictures capable of covering almost all categories are collected as the data set of the training prediction model, the practicability of target detection is improved, the purposes of rapid identification and prediction are achieved by adopting the YOLOv5 net</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN113538390A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
HANDLING RECORD CARRIERS
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title Rapid identification method for grapefruit diseases and insect pests
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T15%3A30%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=SHI%20ZECHEN&rft.date=2021-10-22&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN113538390A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true