Rapid identification method for grapefruit diseases and insect pests
A rapid identification method for grapefruit diseases and insect pests comprises the following steps: collecting pictures of various grapefruit diseases and insect pests, adopting LabelImg to label the diseases and insect pests in the pictures according to the types of the diseases and insect pests,...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | SHI ZECHEN HE JIEFENG YANG LING BAI WEIDONG ZOU JUAN SHI YUQIANG CHEN NINGXIA |
description | A rapid identification method for grapefruit diseases and insect pests comprises the following steps: collecting pictures of various grapefruit diseases and insect pests, adopting LabelImg to label the diseases and insect pests in the pictures according to the types of the diseases and insect pests, and obtaining a training data set and a verification data set; inputting the pictures in the training set and the verification set into a YOLOv5x network model for model training to obtain optimal weight data of the YOLOv5x network model; and loading the optimal weight data into the YOLOv5x network model, inputting a to-be-identified picture, and outputting an identified disease and pest category. According to the method, the grapefruit disease and insect pest pictures capable of covering almost all categories are collected as the data set of the training prediction model, the practicability of target detection is improved, the purposes of rapid identification and prediction are achieved by adopting the YOLOv5 net |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN113538390A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN113538390A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN113538390A3</originalsourceid><addsrcrecordid>eNqNyzEKAjEQRuE0FqLeYfYAgksQtJRdxcpC7Jch-aMDmoTMeH8tPIDVa743d-OVq0SSiGySJLBJyfSCPUqkVBrdG1ek9hajKApWKHH-HlkRjCrUdOlmiZ-K1a8L152Ot-G8Ri0TtHJAhk3Dpe_91u_8fnPw_5gP3UQzIQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Rapid identification method for grapefruit diseases and insect pests</title><source>esp@cenet</source><creator>SHI ZECHEN ; HE JIEFENG ; YANG LING ; BAI WEIDONG ; ZOU JUAN ; SHI YUQIANG ; CHEN NINGXIA</creator><creatorcontrib>SHI ZECHEN ; HE JIEFENG ; YANG LING ; BAI WEIDONG ; ZOU JUAN ; SHI YUQIANG ; CHEN NINGXIA</creatorcontrib><description>A rapid identification method for grapefruit diseases and insect pests comprises the following steps: collecting pictures of various grapefruit diseases and insect pests, adopting LabelImg to label the diseases and insect pests in the pictures according to the types of the diseases and insect pests, and obtaining a training data set and a verification data set; inputting the pictures in the training set and the verification set into a YOLOv5x network model for model training to obtain optimal weight data of the YOLOv5x network model; and loading the optimal weight data into the YOLOv5x network model, inputting a to-be-identified picture, and outputting an identified disease and pest category. According to the method, the grapefruit disease and insect pest pictures capable of covering almost all categories are collected as the data set of the training prediction model, the practicability of target detection is improved, the purposes of rapid identification and prediction are achieved by adopting the YOLOv5 net</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20211022&DB=EPODOC&CC=CN&NR=113538390A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20211022&DB=EPODOC&CC=CN&NR=113538390A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>SHI ZECHEN</creatorcontrib><creatorcontrib>HE JIEFENG</creatorcontrib><creatorcontrib>YANG LING</creatorcontrib><creatorcontrib>BAI WEIDONG</creatorcontrib><creatorcontrib>ZOU JUAN</creatorcontrib><creatorcontrib>SHI YUQIANG</creatorcontrib><creatorcontrib>CHEN NINGXIA</creatorcontrib><title>Rapid identification method for grapefruit diseases and insect pests</title><description>A rapid identification method for grapefruit diseases and insect pests comprises the following steps: collecting pictures of various grapefruit diseases and insect pests, adopting LabelImg to label the diseases and insect pests in the pictures according to the types of the diseases and insect pests, and obtaining a training data set and a verification data set; inputting the pictures in the training set and the verification set into a YOLOv5x network model for model training to obtain optimal weight data of the YOLOv5x network model; and loading the optimal weight data into the YOLOv5x network model, inputting a to-be-identified picture, and outputting an identified disease and pest category. According to the method, the grapefruit disease and insect pest pictures capable of covering almost all categories are collected as the data set of the training prediction model, the practicability of target detection is improved, the purposes of rapid identification and prediction are achieved by adopting the YOLOv5 net</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyzEKAjEQRuE0FqLeYfYAgksQtJRdxcpC7Jch-aMDmoTMeH8tPIDVa743d-OVq0SSiGySJLBJyfSCPUqkVBrdG1ek9hajKApWKHH-HlkRjCrUdOlmiZ-K1a8L152Ot-G8Ri0TtHJAhk3Dpe_91u_8fnPw_5gP3UQzIQ</recordid><startdate>20211022</startdate><enddate>20211022</enddate><creator>SHI ZECHEN</creator><creator>HE JIEFENG</creator><creator>YANG LING</creator><creator>BAI WEIDONG</creator><creator>ZOU JUAN</creator><creator>SHI YUQIANG</creator><creator>CHEN NINGXIA</creator><scope>EVB</scope></search><sort><creationdate>20211022</creationdate><title>Rapid identification method for grapefruit diseases and insect pests</title><author>SHI ZECHEN ; HE JIEFENG ; YANG LING ; BAI WEIDONG ; ZOU JUAN ; SHI YUQIANG ; CHEN NINGXIA</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN113538390A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>SHI ZECHEN</creatorcontrib><creatorcontrib>HE JIEFENG</creatorcontrib><creatorcontrib>YANG LING</creatorcontrib><creatorcontrib>BAI WEIDONG</creatorcontrib><creatorcontrib>ZOU JUAN</creatorcontrib><creatorcontrib>SHI YUQIANG</creatorcontrib><creatorcontrib>CHEN NINGXIA</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>SHI ZECHEN</au><au>HE JIEFENG</au><au>YANG LING</au><au>BAI WEIDONG</au><au>ZOU JUAN</au><au>SHI YUQIANG</au><au>CHEN NINGXIA</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Rapid identification method for grapefruit diseases and insect pests</title><date>2021-10-22</date><risdate>2021</risdate><abstract>A rapid identification method for grapefruit diseases and insect pests comprises the following steps: collecting pictures of various grapefruit diseases and insect pests, adopting LabelImg to label the diseases and insect pests in the pictures according to the types of the diseases and insect pests, and obtaining a training data set and a verification data set; inputting the pictures in the training set and the verification set into a YOLOv5x network model for model training to obtain optimal weight data of the YOLOv5x network model; and loading the optimal weight data into the YOLOv5x network model, inputting a to-be-identified picture, and outputting an identified disease and pest category. According to the method, the grapefruit disease and insect pest pictures capable of covering almost all categories are collected as the data set of the training prediction model, the practicability of target detection is improved, the purposes of rapid identification and prediction are achieved by adopting the YOLOv5 net</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN113538390A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING HANDLING RECORD CARRIERS IMAGE DATA PROCESSING OR GENERATION, IN GENERAL PHYSICS PRESENTATION OF DATA RECOGNITION OF DATA RECORD CARRIERS |
title | Rapid identification method for grapefruit diseases and insect pests |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T15%3A30%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=SHI%20ZECHEN&rft.date=2021-10-22&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN113538390A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |