Binary code tracing method for multi-granularity information fusion under software gene perspective
The invention belongs to the technical field of network security, and discloses a binary code tracing method for multi-granularity information fusion under a software gene perspective, which comprises the following steps of: 1, extracting a software gene sequence, a software gene and a software gene...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | SONG ZHIHUI SHAN ZHENG TANG KE QIAO MENG LIU FUDONG XIONG QIBING ZHANG CHUNYAN XU LIANQIU HUANG YIZHAO GUI HAIREN |
description | The invention belongs to the technical field of network security, and discloses a binary code tracing method for multi-granularity information fusion under a software gene perspective, which comprises the following steps of: 1, extracting a software gene sequence, a software gene and a software gene map of a target program and common information which can be directly extracted from IDA to an sqlite database; 2, carrying out word embedding on the software gene sequence in the sqlite database, and then carrying out bidirectional GRU model training to obtain a feature vector; 3, performing multi-granularity sequence information fusion based on the feature vector obtained after training in the step 2 and information in the sqlite database to obtain a feature vector containing multi-granularity information, and then performing structured learning through graph convolution; 4, mapping the learned hidden layer space feature vector representation to a sample marking space through a full connection layer to serve as a |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN113536308A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN113536308A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN113536308A3</originalsourceid><addsrcrecordid>eNqNi0EKwjAQAHvxIOof1gcULEHxqkXx5Ml7WdJNXUiTsNko_b0VfICngWFmWdkzB5QJbOwJVNByGGAkfcYeXBQYi1euB8FQPArrBBxmP6JyDOBK_qKEngRydPpGIRgoECSSnMgqv2hdLRz6TJsfV9X2enm0t5pS7CgntPOgXXtvGrM3B7M7nsw_zQcMhj9s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Binary code tracing method for multi-granularity information fusion under software gene perspective</title><source>esp@cenet</source><creator>SONG ZHIHUI ; SHAN ZHENG ; TANG KE ; QIAO MENG ; LIU FUDONG ; XIONG QIBING ; ZHANG CHUNYAN ; XU LIANQIU ; HUANG YIZHAO ; GUI HAIREN</creator><creatorcontrib>SONG ZHIHUI ; SHAN ZHENG ; TANG KE ; QIAO MENG ; LIU FUDONG ; XIONG QIBING ; ZHANG CHUNYAN ; XU LIANQIU ; HUANG YIZHAO ; GUI HAIREN</creatorcontrib><description>The invention belongs to the technical field of network security, and discloses a binary code tracing method for multi-granularity information fusion under a software gene perspective, which comprises the following steps of: 1, extracting a software gene sequence, a software gene and a software gene map of a target program and common information which can be directly extracted from IDA to an sqlite database; 2, carrying out word embedding on the software gene sequence in the sqlite database, and then carrying out bidirectional GRU model training to obtain a feature vector; 3, performing multi-granularity sequence information fusion based on the feature vector obtained after training in the step 2 and information in the sqlite database to obtain a feature vector containing multi-granularity information, and then performing structured learning through graph convolution; 4, mapping the learned hidden layer space feature vector representation to a sample marking space through a full connection layer to serve as a</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20211022&DB=EPODOC&CC=CN&NR=113536308A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20211022&DB=EPODOC&CC=CN&NR=113536308A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>SONG ZHIHUI</creatorcontrib><creatorcontrib>SHAN ZHENG</creatorcontrib><creatorcontrib>TANG KE</creatorcontrib><creatorcontrib>QIAO MENG</creatorcontrib><creatorcontrib>LIU FUDONG</creatorcontrib><creatorcontrib>XIONG QIBING</creatorcontrib><creatorcontrib>ZHANG CHUNYAN</creatorcontrib><creatorcontrib>XU LIANQIU</creatorcontrib><creatorcontrib>HUANG YIZHAO</creatorcontrib><creatorcontrib>GUI HAIREN</creatorcontrib><title>Binary code tracing method for multi-granularity information fusion under software gene perspective</title><description>The invention belongs to the technical field of network security, and discloses a binary code tracing method for multi-granularity information fusion under a software gene perspective, which comprises the following steps of: 1, extracting a software gene sequence, a software gene and a software gene map of a target program and common information which can be directly extracted from IDA to an sqlite database; 2, carrying out word embedding on the software gene sequence in the sqlite database, and then carrying out bidirectional GRU model training to obtain a feature vector; 3, performing multi-granularity sequence information fusion based on the feature vector obtained after training in the step 2 and information in the sqlite database to obtain a feature vector containing multi-granularity information, and then performing structured learning through graph convolution; 4, mapping the learned hidden layer space feature vector representation to a sample marking space through a full connection layer to serve as a</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNi0EKwjAQAHvxIOof1gcULEHxqkXx5Ml7WdJNXUiTsNko_b0VfICngWFmWdkzB5QJbOwJVNByGGAkfcYeXBQYi1euB8FQPArrBBxmP6JyDOBK_qKEngRydPpGIRgoECSSnMgqv2hdLRz6TJsfV9X2enm0t5pS7CgntPOgXXtvGrM3B7M7nsw_zQcMhj9s</recordid><startdate>20211022</startdate><enddate>20211022</enddate><creator>SONG ZHIHUI</creator><creator>SHAN ZHENG</creator><creator>TANG KE</creator><creator>QIAO MENG</creator><creator>LIU FUDONG</creator><creator>XIONG QIBING</creator><creator>ZHANG CHUNYAN</creator><creator>XU LIANQIU</creator><creator>HUANG YIZHAO</creator><creator>GUI HAIREN</creator><scope>EVB</scope></search><sort><creationdate>20211022</creationdate><title>Binary code tracing method for multi-granularity information fusion under software gene perspective</title><author>SONG ZHIHUI ; SHAN ZHENG ; TANG KE ; QIAO MENG ; LIU FUDONG ; XIONG QIBING ; ZHANG CHUNYAN ; XU LIANQIU ; HUANG YIZHAO ; GUI HAIREN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN113536308A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>SONG ZHIHUI</creatorcontrib><creatorcontrib>SHAN ZHENG</creatorcontrib><creatorcontrib>TANG KE</creatorcontrib><creatorcontrib>QIAO MENG</creatorcontrib><creatorcontrib>LIU FUDONG</creatorcontrib><creatorcontrib>XIONG QIBING</creatorcontrib><creatorcontrib>ZHANG CHUNYAN</creatorcontrib><creatorcontrib>XU LIANQIU</creatorcontrib><creatorcontrib>HUANG YIZHAO</creatorcontrib><creatorcontrib>GUI HAIREN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>SONG ZHIHUI</au><au>SHAN ZHENG</au><au>TANG KE</au><au>QIAO MENG</au><au>LIU FUDONG</au><au>XIONG QIBING</au><au>ZHANG CHUNYAN</au><au>XU LIANQIU</au><au>HUANG YIZHAO</au><au>GUI HAIREN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Binary code tracing method for multi-granularity information fusion under software gene perspective</title><date>2021-10-22</date><risdate>2021</risdate><abstract>The invention belongs to the technical field of network security, and discloses a binary code tracing method for multi-granularity information fusion under a software gene perspective, which comprises the following steps of: 1, extracting a software gene sequence, a software gene and a software gene map of a target program and common information which can be directly extracted from IDA to an sqlite database; 2, carrying out word embedding on the software gene sequence in the sqlite database, and then carrying out bidirectional GRU model training to obtain a feature vector; 3, performing multi-granularity sequence information fusion based on the feature vector obtained after training in the step 2 and information in the sqlite database to obtain a feature vector containing multi-granularity information, and then performing structured learning through graph convolution; 4, mapping the learned hidden layer space feature vector representation to a sample marking space through a full connection layer to serve as a</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN113536308A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING HANDLING RECORD CARRIERS PHYSICS PRESENTATION OF DATA RECOGNITION OF DATA RECORD CARRIERS |
title | Binary code tracing method for multi-granularity information fusion under software gene perspective |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T01%3A01%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=SONG%20ZHIHUI&rft.date=2021-10-22&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN113536308A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |