Intelligent factory production job scheduling method and system based on deep reinforcement learning

The invention relates to an intelligent factory production job scheduling method based on deep reinforcement learning, and the method comprises the following steps: S1, obtaining processing data of each process of each task on a corresponding machine, and carrying out preprocessing of the data, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: XIONG QIANCHENG, DONG CHEN, HONG QIYU, CHEN ZHENYI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator XIONG QIANCHENG
DONG CHEN
HONG QIYU
CHEN ZHENYI
description The invention relates to an intelligent factory production job scheduling method based on deep reinforcement learning, and the method comprises the following steps: S1, obtaining processing data of each process of each task on a corresponding machine, and carrying out preprocessing of the data, and forming a training set; S2, constructing a deep reinforcement learning DQN model, wherein the deep reinforcement learning DQN model comprises a DQN deep learning network structure and a DQN reinforcement learning module; S3, training the deep reinforcement learning DQN model to obtain a trained deep reinforcement learning DQN model; and S4, pre-processing to-be-produced task scheduling data, and inputting the pre-processed to-be-produced task scheduling data into the trained deep reinforcement learning DQN model to obtain a scheduling arrangement of a production task process. According to the invention, rapid and efficient scheduling of the current production operation can be realized. 本发明涉及一种基于深度强化学习的智能工厂生产作业调度方法,
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN113487165A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN113487165A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN113487165A3</originalsourceid><addsrcrecordid>eNqNjDsOwjAQBdNQIOAOywEoovBrUQSChoo-crwviZG9tmynyO0JEgegmmZmlgU_JMNa00MydUpnHycK0fOos_FCb99S0gN4tEZ6csiDZ1LClKaU4ahVCUyzyUCgCCOdjxru-7NQUeZsXSw6ZRM2P66K7e36qu87BN8gBaUhyE39LMtqfz6Vx8Ol-sf5AEg4P4Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Intelligent factory production job scheduling method and system based on deep reinforcement learning</title><source>esp@cenet</source><creator>XIONG QIANCHENG ; DONG CHEN ; HONG QIYU ; CHEN ZHENYI</creator><creatorcontrib>XIONG QIANCHENG ; DONG CHEN ; HONG QIYU ; CHEN ZHENYI</creatorcontrib><description>The invention relates to an intelligent factory production job scheduling method based on deep reinforcement learning, and the method comprises the following steps: S1, obtaining processing data of each process of each task on a corresponding machine, and carrying out preprocessing of the data, and forming a training set; S2, constructing a deep reinforcement learning DQN model, wherein the deep reinforcement learning DQN model comprises a DQN deep learning network structure and a DQN reinforcement learning module; S3, training the deep reinforcement learning DQN model to obtain a trained deep reinforcement learning DQN model; and S4, pre-processing to-be-produced task scheduling data, and inputting the pre-processed to-be-produced task scheduling data into the trained deep reinforcement learning DQN model to obtain a scheduling arrangement of a production task process. According to the invention, rapid and efficient scheduling of the current production operation can be realized. 本发明涉及一种基于深度强化学习的智能工厂生产作业调度方法,</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20211008&amp;DB=EPODOC&amp;CC=CN&amp;NR=113487165A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,309,781,886,25569,76552</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20211008&amp;DB=EPODOC&amp;CC=CN&amp;NR=113487165A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>XIONG QIANCHENG</creatorcontrib><creatorcontrib>DONG CHEN</creatorcontrib><creatorcontrib>HONG QIYU</creatorcontrib><creatorcontrib>CHEN ZHENYI</creatorcontrib><title>Intelligent factory production job scheduling method and system based on deep reinforcement learning</title><description>The invention relates to an intelligent factory production job scheduling method based on deep reinforcement learning, and the method comprises the following steps: S1, obtaining processing data of each process of each task on a corresponding machine, and carrying out preprocessing of the data, and forming a training set; S2, constructing a deep reinforcement learning DQN model, wherein the deep reinforcement learning DQN model comprises a DQN deep learning network structure and a DQN reinforcement learning module; S3, training the deep reinforcement learning DQN model to obtain a trained deep reinforcement learning DQN model; and S4, pre-processing to-be-produced task scheduling data, and inputting the pre-processed to-be-produced task scheduling data into the trained deep reinforcement learning DQN model to obtain a scheduling arrangement of a production task process. According to the invention, rapid and efficient scheduling of the current production operation can be realized. 本发明涉及一种基于深度强化学习的智能工厂生产作业调度方法,</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjDsOwjAQBdNQIOAOywEoovBrUQSChoo-crwviZG9tmynyO0JEgegmmZmlgU_JMNa00MydUpnHycK0fOos_FCb99S0gN4tEZ6csiDZ1LClKaU4ahVCUyzyUCgCCOdjxru-7NQUeZsXSw6ZRM2P66K7e36qu87BN8gBaUhyE39LMtqfz6Vx8Ol-sf5AEg4P4Y</recordid><startdate>20211008</startdate><enddate>20211008</enddate><creator>XIONG QIANCHENG</creator><creator>DONG CHEN</creator><creator>HONG QIYU</creator><creator>CHEN ZHENYI</creator><scope>EVB</scope></search><sort><creationdate>20211008</creationdate><title>Intelligent factory production job scheduling method and system based on deep reinforcement learning</title><author>XIONG QIANCHENG ; DONG CHEN ; HONG QIYU ; CHEN ZHENYI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN113487165A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>XIONG QIANCHENG</creatorcontrib><creatorcontrib>DONG CHEN</creatorcontrib><creatorcontrib>HONG QIYU</creatorcontrib><creatorcontrib>CHEN ZHENYI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>XIONG QIANCHENG</au><au>DONG CHEN</au><au>HONG QIYU</au><au>CHEN ZHENYI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Intelligent factory production job scheduling method and system based on deep reinforcement learning</title><date>2021-10-08</date><risdate>2021</risdate><abstract>The invention relates to an intelligent factory production job scheduling method based on deep reinforcement learning, and the method comprises the following steps: S1, obtaining processing data of each process of each task on a corresponding machine, and carrying out preprocessing of the data, and forming a training set; S2, constructing a deep reinforcement learning DQN model, wherein the deep reinforcement learning DQN model comprises a DQN deep learning network structure and a DQN reinforcement learning module; S3, training the deep reinforcement learning DQN model to obtain a trained deep reinforcement learning DQN model; and S4, pre-processing to-be-produced task scheduling data, and inputting the pre-processed to-be-produced task scheduling data into the trained deep reinforcement learning DQN model to obtain a scheduling arrangement of a production task process. According to the invention, rapid and efficient scheduling of the current production operation can be realized. 本发明涉及一种基于深度强化学习的智能工厂生产作业调度方法,</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN113487165A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title Intelligent factory production job scheduling method and system based on deep reinforcement learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T07%3A22%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=XIONG%20QIANCHENG&rft.date=2021-10-08&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN113487165A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true