Unmanned vehicle local autonomous control method, device and equipment based on depth map
The invention relates to an unmanned vehicle local autonomous control method, a device and equipment based on a depth map. The method comprises the following steps: acquiring the depth map shot in the field of view of an unmanned vehicle and extracting a depth feature vector of the depth map; splici...
Gespeichert in:
Hauptverfasser: | , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | LIANG ZHUANG ZHANG QI SUO XIANGBO CHEN TINGZHENG HU RUIJUN ZHANG YULIN LI CHUANXIANG ZHENG YONGHUANG ZHAO CHENG |
description | The invention relates to an unmanned vehicle local autonomous control method, a device and equipment based on a depth map. The method comprises the following steps: acquiring the depth map shot in the field of view of an unmanned vehicle and extracting a depth feature vector of the depth map; splicing and fusing the depth feature vectors corresponding to a plurality of depth images continuously shot at historical moments and the navigation target point position coordinates of the unmanned vehicle when the depth images are shot to obtain a fused feature vector, and taking the fused feature vector as the input state of the navigation neural network of the unmanned vehicle; designing a comprehensive reward function; training a navigation neural network by adopting a hyper-parameter segmentation training strategy in an obstacle simulation environment by utilizing the fusion feature vector and the comprehensive reward function; and in a real physical environment, processing a depth image by using the trained navig |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN113486871A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN113486871A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN113486871A3</originalsourceid><addsrcrecordid>eNqNjDEOwjAQBNNQIOAPRw-FFQRpUQSiooKCKjrsRYlk3xls5_2k4AFUU8xo5tXjLoFF4GhEP1gP8mrZE5esokFLIquSP-opIPfqNuQwDhbE4gjvMsQAyfTkND1UJhtzT4Hjspq92CesflxU6_Pp1l62iNohRbYQ5K69GlPvmn1zMMf6n-YL6_c6oQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Unmanned vehicle local autonomous control method, device and equipment based on depth map</title><source>esp@cenet</source><creator>LIANG ZHUANG ; ZHANG QI ; SUO XIANGBO ; CHEN TINGZHENG ; HU RUIJUN ; ZHANG YULIN ; LI CHUANXIANG ; ZHENG YONGHUANG ; ZHAO CHENG</creator><creatorcontrib>LIANG ZHUANG ; ZHANG QI ; SUO XIANGBO ; CHEN TINGZHENG ; HU RUIJUN ; ZHANG YULIN ; LI CHUANXIANG ; ZHENG YONGHUANG ; ZHAO CHENG</creatorcontrib><description>The invention relates to an unmanned vehicle local autonomous control method, a device and equipment based on a depth map. The method comprises the following steps: acquiring the depth map shot in the field of view of an unmanned vehicle and extracting a depth feature vector of the depth map; splicing and fusing the depth feature vectors corresponding to a plurality of depth images continuously shot at historical moments and the navigation target point position coordinates of the unmanned vehicle when the depth images are shot to obtain a fused feature vector, and taking the fused feature vector as the input state of the navigation neural network of the unmanned vehicle; designing a comprehensive reward function; training a navigation neural network by adopting a hyper-parameter segmentation training strategy in an obstacle simulation environment by utilizing the fusion feature vector and the comprehensive reward function; and in a real physical environment, processing a depth image by using the trained navig</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; CONTROLLING ; COUNTING ; HANDLING RECORD CARRIERS ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS ; REGULATING ; SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20211008&DB=EPODOC&CC=CN&NR=113486871A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20211008&DB=EPODOC&CC=CN&NR=113486871A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LIANG ZHUANG</creatorcontrib><creatorcontrib>ZHANG QI</creatorcontrib><creatorcontrib>SUO XIANGBO</creatorcontrib><creatorcontrib>CHEN TINGZHENG</creatorcontrib><creatorcontrib>HU RUIJUN</creatorcontrib><creatorcontrib>ZHANG YULIN</creatorcontrib><creatorcontrib>LI CHUANXIANG</creatorcontrib><creatorcontrib>ZHENG YONGHUANG</creatorcontrib><creatorcontrib>ZHAO CHENG</creatorcontrib><title>Unmanned vehicle local autonomous control method, device and equipment based on depth map</title><description>The invention relates to an unmanned vehicle local autonomous control method, a device and equipment based on a depth map. The method comprises the following steps: acquiring the depth map shot in the field of view of an unmanned vehicle and extracting a depth feature vector of the depth map; splicing and fusing the depth feature vectors corresponding to a plurality of depth images continuously shot at historical moments and the navigation target point position coordinates of the unmanned vehicle when the depth images are shot to obtain a fused feature vector, and taking the fused feature vector as the input state of the navigation neural network of the unmanned vehicle; designing a comprehensive reward function; training a navigation neural network by adopting a hyper-parameter segmentation training strategy in an obstacle simulation environment by utilizing the fusion feature vector and the comprehensive reward function; and in a real physical environment, processing a depth image by using the trained navig</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>CONTROLLING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><subject>REGULATING</subject><subject>SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjDEOwjAQBNNQIOAPRw-FFQRpUQSiooKCKjrsRYlk3xls5_2k4AFUU8xo5tXjLoFF4GhEP1gP8mrZE5esokFLIquSP-opIPfqNuQwDhbE4gjvMsQAyfTkND1UJhtzT4Hjspq92CesflxU6_Pp1l62iNohRbYQ5K69GlPvmn1zMMf6n-YL6_c6oQ</recordid><startdate>20211008</startdate><enddate>20211008</enddate><creator>LIANG ZHUANG</creator><creator>ZHANG QI</creator><creator>SUO XIANGBO</creator><creator>CHEN TINGZHENG</creator><creator>HU RUIJUN</creator><creator>ZHANG YULIN</creator><creator>LI CHUANXIANG</creator><creator>ZHENG YONGHUANG</creator><creator>ZHAO CHENG</creator><scope>EVB</scope></search><sort><creationdate>20211008</creationdate><title>Unmanned vehicle local autonomous control method, device and equipment based on depth map</title><author>LIANG ZHUANG ; ZHANG QI ; SUO XIANGBO ; CHEN TINGZHENG ; HU RUIJUN ; ZHANG YULIN ; LI CHUANXIANG ; ZHENG YONGHUANG ; ZHAO CHENG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN113486871A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>CONTROLLING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><topic>REGULATING</topic><topic>SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES</topic><toplevel>online_resources</toplevel><creatorcontrib>LIANG ZHUANG</creatorcontrib><creatorcontrib>ZHANG QI</creatorcontrib><creatorcontrib>SUO XIANGBO</creatorcontrib><creatorcontrib>CHEN TINGZHENG</creatorcontrib><creatorcontrib>HU RUIJUN</creatorcontrib><creatorcontrib>ZHANG YULIN</creatorcontrib><creatorcontrib>LI CHUANXIANG</creatorcontrib><creatorcontrib>ZHENG YONGHUANG</creatorcontrib><creatorcontrib>ZHAO CHENG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LIANG ZHUANG</au><au>ZHANG QI</au><au>SUO XIANGBO</au><au>CHEN TINGZHENG</au><au>HU RUIJUN</au><au>ZHANG YULIN</au><au>LI CHUANXIANG</au><au>ZHENG YONGHUANG</au><au>ZHAO CHENG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Unmanned vehicle local autonomous control method, device and equipment based on depth map</title><date>2021-10-08</date><risdate>2021</risdate><abstract>The invention relates to an unmanned vehicle local autonomous control method, a device and equipment based on a depth map. The method comprises the following steps: acquiring the depth map shot in the field of view of an unmanned vehicle and extracting a depth feature vector of the depth map; splicing and fusing the depth feature vectors corresponding to a plurality of depth images continuously shot at historical moments and the navigation target point position coordinates of the unmanned vehicle when the depth images are shot to obtain a fused feature vector, and taking the fused feature vector as the input state of the navigation neural network of the unmanned vehicle; designing a comprehensive reward function; training a navigation neural network by adopting a hyper-parameter segmentation training strategy in an obstacle simulation environment by utilizing the fusion feature vector and the comprehensive reward function; and in a real physical environment, processing a depth image by using the trained navig</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN113486871A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING CONTROLLING COUNTING HANDLING RECORD CARRIERS IMAGE DATA PROCESSING OR GENERATION, IN GENERAL PHYSICS PRESENTATION OF DATA RECOGNITION OF DATA RECORD CARRIERS REGULATING SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES |
title | Unmanned vehicle local autonomous control method, device and equipment based on depth map |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T23%3A25%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LIANG%20ZHUANG&rft.date=2021-10-08&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN113486871A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |