Convolutional neural network soil available phosphorus analysis model construction system and method

The invention relates to the technical field of remote sensing technology and variable rate fertilization, in particular to a convolutional neural network soil available phosphorus analysis model construction system and method. The system comprises an original data arrangement module, a wave band tr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: WANG NAN, WANG ZHENYU, CHENG FEIYAN, WANG ZHONGJIAO, MA HONGKUN, WANG TAO, ZHANG PENGYONG, SONG ZHENQIANG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator WANG NAN
WANG ZHENYU
CHENG FEIYAN
WANG ZHONGJIAO
MA HONGKUN
WANG TAO
ZHANG PENGYONG
SONG ZHENQIANG
description The invention relates to the technical field of remote sensing technology and variable rate fertilization, in particular to a convolutional neural network soil available phosphorus analysis model construction system and method. The system comprises an original data arrangement module, a wave band transformation module, a sensitivity analysis module, a transformation wave band analysis module, a parameter input module, a convolutional neural network construction module, a model training module, a precision evaluation module, a coarse error elimination module, a model verification module and a model storage module, a model retraining Module and an outcome graph output module which are operated in a flow mode. According to the method, accurate and comprehensive fertilization can be guided through a soil available phosphorus analysis model based on remote sensing and a convolutional neural network, so that the problems that the cost input is too large and the environment is polluted due to excessive fertilization
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN113420875A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN113420875A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN113420875A3</originalsourceid><addsrcrecordid>eNqNjTEKwkAQRdNYiHqH8QCCMYq2EhQrK_swZkeyOLsTdnYjub2reACLz2se708LU4sfhFO04pHBUwpfxJeEJ6hYBhzQMt6ZoO9E80JSwGyPahWcGGJoxWsMqf1kQEeN5LJiwFHsxMyLyQNZafHjrFieT7f6sqJeGtIeW8qPTX0ty2q7WR_2u2P1j_MGu-9AUw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Convolutional neural network soil available phosphorus analysis model construction system and method</title><source>esp@cenet</source><creator>WANG NAN ; WANG ZHENYU ; CHENG FEIYAN ; WANG ZHONGJIAO ; MA HONGKUN ; WANG TAO ; ZHANG PENGYONG ; SONG ZHENQIANG</creator><creatorcontrib>WANG NAN ; WANG ZHENYU ; CHENG FEIYAN ; WANG ZHONGJIAO ; MA HONGKUN ; WANG TAO ; ZHANG PENGYONG ; SONG ZHENQIANG</creatorcontrib><description>The invention relates to the technical field of remote sensing technology and variable rate fertilization, in particular to a convolutional neural network soil available phosphorus analysis model construction system and method. The system comprises an original data arrangement module, a wave band transformation module, a sensitivity analysis module, a transformation wave band analysis module, a parameter input module, a convolutional neural network construction module, a model training module, a precision evaluation module, a coarse error elimination module, a model verification module and a model storage module, a model retraining Module and an outcome graph output module which are operated in a flow mode. According to the method, accurate and comprehensive fertilization can be guided through a soil available phosphorus analysis model based on remote sensing and a convolutional neural network, so that the problems that the cost input is too large and the environment is polluted due to excessive fertilization</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; HANDLING RECORD CARRIERS ; INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES ; MEASURING ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS ; TESTING</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210921&amp;DB=EPODOC&amp;CC=CN&amp;NR=113420875A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210921&amp;DB=EPODOC&amp;CC=CN&amp;NR=113420875A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WANG NAN</creatorcontrib><creatorcontrib>WANG ZHENYU</creatorcontrib><creatorcontrib>CHENG FEIYAN</creatorcontrib><creatorcontrib>WANG ZHONGJIAO</creatorcontrib><creatorcontrib>MA HONGKUN</creatorcontrib><creatorcontrib>WANG TAO</creatorcontrib><creatorcontrib>ZHANG PENGYONG</creatorcontrib><creatorcontrib>SONG ZHENQIANG</creatorcontrib><title>Convolutional neural network soil available phosphorus analysis model construction system and method</title><description>The invention relates to the technical field of remote sensing technology and variable rate fertilization, in particular to a convolutional neural network soil available phosphorus analysis model construction system and method. The system comprises an original data arrangement module, a wave band transformation module, a sensitivity analysis module, a transformation wave band analysis module, a parameter input module, a convolutional neural network construction module, a model training module, a precision evaluation module, a coarse error elimination module, a model verification module and a model storage module, a model retraining Module and an outcome graph output module which are operated in a flow mode. According to the method, accurate and comprehensive fertilization can be guided through a soil available phosphorus analysis model based on remote sensing and a convolutional neural network, so that the problems that the cost input is too large and the environment is polluted due to excessive fertilization</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES</subject><subject>MEASURING</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjTEKwkAQRdNYiHqH8QCCMYq2EhQrK_swZkeyOLsTdnYjub2reACLz2se708LU4sfhFO04pHBUwpfxJeEJ6hYBhzQMt6ZoO9E80JSwGyPahWcGGJoxWsMqf1kQEeN5LJiwFHsxMyLyQNZafHjrFieT7f6sqJeGtIeW8qPTX0ty2q7WR_2u2P1j_MGu-9AUw</recordid><startdate>20210921</startdate><enddate>20210921</enddate><creator>WANG NAN</creator><creator>WANG ZHENYU</creator><creator>CHENG FEIYAN</creator><creator>WANG ZHONGJIAO</creator><creator>MA HONGKUN</creator><creator>WANG TAO</creator><creator>ZHANG PENGYONG</creator><creator>SONG ZHENQIANG</creator><scope>EVB</scope></search><sort><creationdate>20210921</creationdate><title>Convolutional neural network soil available phosphorus analysis model construction system and method</title><author>WANG NAN ; WANG ZHENYU ; CHENG FEIYAN ; WANG ZHONGJIAO ; MA HONGKUN ; WANG TAO ; ZHANG PENGYONG ; SONG ZHENQIANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN113420875A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES</topic><topic>MEASURING</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>WANG NAN</creatorcontrib><creatorcontrib>WANG ZHENYU</creatorcontrib><creatorcontrib>CHENG FEIYAN</creatorcontrib><creatorcontrib>WANG ZHONGJIAO</creatorcontrib><creatorcontrib>MA HONGKUN</creatorcontrib><creatorcontrib>WANG TAO</creatorcontrib><creatorcontrib>ZHANG PENGYONG</creatorcontrib><creatorcontrib>SONG ZHENQIANG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WANG NAN</au><au>WANG ZHENYU</au><au>CHENG FEIYAN</au><au>WANG ZHONGJIAO</au><au>MA HONGKUN</au><au>WANG TAO</au><au>ZHANG PENGYONG</au><au>SONG ZHENQIANG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Convolutional neural network soil available phosphorus analysis model construction system and method</title><date>2021-09-21</date><risdate>2021</risdate><abstract>The invention relates to the technical field of remote sensing technology and variable rate fertilization, in particular to a convolutional neural network soil available phosphorus analysis model construction system and method. The system comprises an original data arrangement module, a wave band transformation module, a sensitivity analysis module, a transformation wave band analysis module, a parameter input module, a convolutional neural network construction module, a model training module, a precision evaluation module, a coarse error elimination module, a model verification module and a model storage module, a model retraining Module and an outcome graph output module which are operated in a flow mode. According to the method, accurate and comprehensive fertilization can be guided through a soil available phosphorus analysis model based on remote sensing and a convolutional neural network, so that the problems that the cost input is too large and the environment is polluted due to excessive fertilization</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN113420875A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
HANDLING RECORD CARRIERS
INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES
MEASURING
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
TESTING
title Convolutional neural network soil available phosphorus analysis model construction system and method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T03%3A45%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WANG%20NAN&rft.date=2021-09-21&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN113420875A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true