Convolutional neural network soil available phosphorus analysis model construction system and method
The invention relates to the technical field of remote sensing technology and variable rate fertilization, in particular to a convolutional neural network soil available phosphorus analysis model construction system and method. The system comprises an original data arrangement module, a wave band tr...
Gespeichert in:
Hauptverfasser: | , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | WANG NAN WANG ZHENYU CHENG FEIYAN WANG ZHONGJIAO MA HONGKUN WANG TAO ZHANG PENGYONG SONG ZHENQIANG |
description | The invention relates to the technical field of remote sensing technology and variable rate fertilization, in particular to a convolutional neural network soil available phosphorus analysis model construction system and method. The system comprises an original data arrangement module, a wave band transformation module, a sensitivity analysis module, a transformation wave band analysis module, a parameter input module, a convolutional neural network construction module, a model training module, a precision evaluation module, a coarse error elimination module, a model verification module and a model storage module, a model retraining Module and an outcome graph output module which are operated in a flow mode. According to the method, accurate and comprehensive fertilization can be guided through a soil available phosphorus analysis model based on remote sensing and a convolutional neural network, so that the problems that the cost input is too large and the environment is polluted due to excessive fertilization |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN113420875A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN113420875A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN113420875A3</originalsourceid><addsrcrecordid>eNqNjTEKwkAQRdNYiHqH8QCCMYq2EhQrK_swZkeyOLsTdnYjub2reACLz2se708LU4sfhFO04pHBUwpfxJeEJ6hYBhzQMt6ZoO9E80JSwGyPahWcGGJoxWsMqf1kQEeN5LJiwFHsxMyLyQNZafHjrFieT7f6sqJeGtIeW8qPTX0ty2q7WR_2u2P1j_MGu-9AUw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Convolutional neural network soil available phosphorus analysis model construction system and method</title><source>esp@cenet</source><creator>WANG NAN ; WANG ZHENYU ; CHENG FEIYAN ; WANG ZHONGJIAO ; MA HONGKUN ; WANG TAO ; ZHANG PENGYONG ; SONG ZHENQIANG</creator><creatorcontrib>WANG NAN ; WANG ZHENYU ; CHENG FEIYAN ; WANG ZHONGJIAO ; MA HONGKUN ; WANG TAO ; ZHANG PENGYONG ; SONG ZHENQIANG</creatorcontrib><description>The invention relates to the technical field of remote sensing technology and variable rate fertilization, in particular to a convolutional neural network soil available phosphorus analysis model construction system and method. The system comprises an original data arrangement module, a wave band transformation module, a sensitivity analysis module, a transformation wave band analysis module, a parameter input module, a convolutional neural network construction module, a model training module, a precision evaluation module, a coarse error elimination module, a model verification module and a model storage module, a model retraining Module and an outcome graph output module which are operated in a flow mode. According to the method, accurate and comprehensive fertilization can be guided through a soil available phosphorus analysis model based on remote sensing and a convolutional neural network, so that the problems that the cost input is too large and the environment is polluted due to excessive fertilization</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; HANDLING RECORD CARRIERS ; INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES ; MEASURING ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS ; TESTING</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210921&DB=EPODOC&CC=CN&NR=113420875A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210921&DB=EPODOC&CC=CN&NR=113420875A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WANG NAN</creatorcontrib><creatorcontrib>WANG ZHENYU</creatorcontrib><creatorcontrib>CHENG FEIYAN</creatorcontrib><creatorcontrib>WANG ZHONGJIAO</creatorcontrib><creatorcontrib>MA HONGKUN</creatorcontrib><creatorcontrib>WANG TAO</creatorcontrib><creatorcontrib>ZHANG PENGYONG</creatorcontrib><creatorcontrib>SONG ZHENQIANG</creatorcontrib><title>Convolutional neural network soil available phosphorus analysis model construction system and method</title><description>The invention relates to the technical field of remote sensing technology and variable rate fertilization, in particular to a convolutional neural network soil available phosphorus analysis model construction system and method. The system comprises an original data arrangement module, a wave band transformation module, a sensitivity analysis module, a transformation wave band analysis module, a parameter input module, a convolutional neural network construction module, a model training module, a precision evaluation module, a coarse error elimination module, a model verification module and a model storage module, a model retraining Module and an outcome graph output module which are operated in a flow mode. According to the method, accurate and comprehensive fertilization can be guided through a soil available phosphorus analysis model based on remote sensing and a convolutional neural network, so that the problems that the cost input is too large and the environment is polluted due to excessive fertilization</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES</subject><subject>MEASURING</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjTEKwkAQRdNYiHqH8QCCMYq2EhQrK_swZkeyOLsTdnYjub2reACLz2se708LU4sfhFO04pHBUwpfxJeEJ6hYBhzQMt6ZoO9E80JSwGyPahWcGGJoxWsMqf1kQEeN5LJiwFHsxMyLyQNZafHjrFieT7f6sqJeGtIeW8qPTX0ty2q7WR_2u2P1j_MGu-9AUw</recordid><startdate>20210921</startdate><enddate>20210921</enddate><creator>WANG NAN</creator><creator>WANG ZHENYU</creator><creator>CHENG FEIYAN</creator><creator>WANG ZHONGJIAO</creator><creator>MA HONGKUN</creator><creator>WANG TAO</creator><creator>ZHANG PENGYONG</creator><creator>SONG ZHENQIANG</creator><scope>EVB</scope></search><sort><creationdate>20210921</creationdate><title>Convolutional neural network soil available phosphorus analysis model construction system and method</title><author>WANG NAN ; WANG ZHENYU ; CHENG FEIYAN ; WANG ZHONGJIAO ; MA HONGKUN ; WANG TAO ; ZHANG PENGYONG ; SONG ZHENQIANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN113420875A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES</topic><topic>MEASURING</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>WANG NAN</creatorcontrib><creatorcontrib>WANG ZHENYU</creatorcontrib><creatorcontrib>CHENG FEIYAN</creatorcontrib><creatorcontrib>WANG ZHONGJIAO</creatorcontrib><creatorcontrib>MA HONGKUN</creatorcontrib><creatorcontrib>WANG TAO</creatorcontrib><creatorcontrib>ZHANG PENGYONG</creatorcontrib><creatorcontrib>SONG ZHENQIANG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WANG NAN</au><au>WANG ZHENYU</au><au>CHENG FEIYAN</au><au>WANG ZHONGJIAO</au><au>MA HONGKUN</au><au>WANG TAO</au><au>ZHANG PENGYONG</au><au>SONG ZHENQIANG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Convolutional neural network soil available phosphorus analysis model construction system and method</title><date>2021-09-21</date><risdate>2021</risdate><abstract>The invention relates to the technical field of remote sensing technology and variable rate fertilization, in particular to a convolutional neural network soil available phosphorus analysis model construction system and method. The system comprises an original data arrangement module, a wave band transformation module, a sensitivity analysis module, a transformation wave band analysis module, a parameter input module, a convolutional neural network construction module, a model training module, a precision evaluation module, a coarse error elimination module, a model verification module and a model storage module, a model retraining Module and an outcome graph output module which are operated in a flow mode. According to the method, accurate and comprehensive fertilization can be guided through a soil available phosphorus analysis model based on remote sensing and a convolutional neural network, so that the problems that the cost input is too large and the environment is polluted due to excessive fertilization</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN113420875A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING HANDLING RECORD CARRIERS INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES MEASURING PHYSICS PRESENTATION OF DATA RECOGNITION OF DATA RECORD CARRIERS TESTING |
title | Convolutional neural network soil available phosphorus analysis model construction system and method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T03%3A45%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WANG%20NAN&rft.date=2021-09-21&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN113420875A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |