Modeling method for wind-light-fire coupling system frequency response model based on GAN and GRU neural networks

The invention aims to provide a modeling method of a system frequency response model based on a generative adversarial network (GAN) and a gate cycle unit (GRU) neural network, aiming at complex dynamic characteristics such as time varying, nonlinearity, uncertainty, intermittency and the like of a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: WANG LEI, HU BO, HUANG CONGZHI, ZHANG JIANHUA, WANG YONGYUE, WANG SHUNJIANG, LI HONGRUI, LI BIN, HOU GUOLIAN, ZHOU GUIPING
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator WANG LEI
HU BO
HUANG CONGZHI
ZHANG JIANHUA
WANG YONGYUE
WANG SHUNJIANG
LI HONGRUI
LI BIN
HOU GUOLIAN
ZHOU GUIPING
description The invention aims to provide a modeling method of a system frequency response model based on a generative adversarial network (GAN) and a gate cycle unit (GRU) neural network, aiming at complex dynamic characteristics such as time varying, nonlinearity, uncertainty, intermittency and the like of a wind-light-fire coupling system, and discloses a modeling method of a system frequency response model based on the GAN and the GRU neural network. The generative adversarial network is utilized to solve the problem that training samples are deficient in the building process of the system frequency response model based on data driving. In addition, the problem that an existing modeling method cannot accurately describe nonlinearity, uncertainty and the like of system frequency response is solved by utilizing a gate circulation unit neural network. 本发明的目的是针对风光火耦合系统时变、非线性、不确定性、间歇性等复杂的动态特性,提出了一种基于生成对抗网络(GenerativeAdversarial Networks,GAN)与门循环单元(Gate Recurrent Unit,GRU)神经网络的系统频率响应模型建模方法。利用生成对抗网络解决了基于数据驱动的系统频率响应模型建立过程中训练
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN113420492A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN113420492A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN113420492A3</originalsourceid><addsrcrecordid>eNqNzD0OgkAQQGEaC6PeYTwAifw0loQoNlIYrcnKzsLGZQZ2lxBuLxoPYPWaL28dDFeWaDQ10KFvWYJiC5MmGRrdtD5U2iLUPPZf42bnsQNlcRiR6hksup7JIXSfDTyFQwlMUGQlCJJQ3B5AOFphlviJ7cttg5USxuHu102wP5_u-SXEnqtlJ2pcaJWXUZSk8SE9xlnyj3kDbU9DHA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Modeling method for wind-light-fire coupling system frequency response model based on GAN and GRU neural networks</title><source>esp@cenet</source><creator>WANG LEI ; HU BO ; HUANG CONGZHI ; ZHANG JIANHUA ; WANG YONGYUE ; WANG SHUNJIANG ; LI HONGRUI ; LI BIN ; HOU GUOLIAN ; ZHOU GUIPING</creator><creatorcontrib>WANG LEI ; HU BO ; HUANG CONGZHI ; ZHANG JIANHUA ; WANG YONGYUE ; WANG SHUNJIANG ; LI HONGRUI ; LI BIN ; HOU GUOLIAN ; ZHOU GUIPING</creatorcontrib><description>The invention aims to provide a modeling method of a system frequency response model based on a generative adversarial network (GAN) and a gate cycle unit (GRU) neural network, aiming at complex dynamic characteristics such as time varying, nonlinearity, uncertainty, intermittency and the like of a wind-light-fire coupling system, and discloses a modeling method of a system frequency response model based on the GAN and the GRU neural network. The generative adversarial network is utilized to solve the problem that training samples are deficient in the building process of the system frequency response model based on data driving. In addition, the problem that an existing modeling method cannot accurately describe nonlinearity, uncertainty and the like of system frequency response is solved by utilizing a gate circulation unit neural network. 本发明的目的是针对风光火耦合系统时变、非线性、不确定性、间歇性等复杂的动态特性,提出了一种基于生成对抗网络(GenerativeAdversarial Networks,GAN)与门循环单元(Gate Recurrent Unit,GRU)神经网络的系统频率响应模型建模方法。利用生成对抗网络解决了基于数据驱动的系统频率响应模型建立过程中训练</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210921&amp;DB=EPODOC&amp;CC=CN&amp;NR=113420492A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76419</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210921&amp;DB=EPODOC&amp;CC=CN&amp;NR=113420492A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WANG LEI</creatorcontrib><creatorcontrib>HU BO</creatorcontrib><creatorcontrib>HUANG CONGZHI</creatorcontrib><creatorcontrib>ZHANG JIANHUA</creatorcontrib><creatorcontrib>WANG YONGYUE</creatorcontrib><creatorcontrib>WANG SHUNJIANG</creatorcontrib><creatorcontrib>LI HONGRUI</creatorcontrib><creatorcontrib>LI BIN</creatorcontrib><creatorcontrib>HOU GUOLIAN</creatorcontrib><creatorcontrib>ZHOU GUIPING</creatorcontrib><title>Modeling method for wind-light-fire coupling system frequency response model based on GAN and GRU neural networks</title><description>The invention aims to provide a modeling method of a system frequency response model based on a generative adversarial network (GAN) and a gate cycle unit (GRU) neural network, aiming at complex dynamic characteristics such as time varying, nonlinearity, uncertainty, intermittency and the like of a wind-light-fire coupling system, and discloses a modeling method of a system frequency response model based on the GAN and the GRU neural network. The generative adversarial network is utilized to solve the problem that training samples are deficient in the building process of the system frequency response model based on data driving. In addition, the problem that an existing modeling method cannot accurately describe nonlinearity, uncertainty and the like of system frequency response is solved by utilizing a gate circulation unit neural network. 本发明的目的是针对风光火耦合系统时变、非线性、不确定性、间歇性等复杂的动态特性,提出了一种基于生成对抗网络(GenerativeAdversarial Networks,GAN)与门循环单元(Gate Recurrent Unit,GRU)神经网络的系统频率响应模型建模方法。利用生成对抗网络解决了基于数据驱动的系统频率响应模型建立过程中训练</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNzD0OgkAQQGEaC6PeYTwAifw0loQoNlIYrcnKzsLGZQZ2lxBuLxoPYPWaL28dDFeWaDQ10KFvWYJiC5MmGRrdtD5U2iLUPPZf42bnsQNlcRiR6hksup7JIXSfDTyFQwlMUGQlCJJQ3B5AOFphlviJ7cttg5USxuHu102wP5_u-SXEnqtlJ2pcaJWXUZSk8SE9xlnyj3kDbU9DHA</recordid><startdate>20210921</startdate><enddate>20210921</enddate><creator>WANG LEI</creator><creator>HU BO</creator><creator>HUANG CONGZHI</creator><creator>ZHANG JIANHUA</creator><creator>WANG YONGYUE</creator><creator>WANG SHUNJIANG</creator><creator>LI HONGRUI</creator><creator>LI BIN</creator><creator>HOU GUOLIAN</creator><creator>ZHOU GUIPING</creator><scope>EVB</scope></search><sort><creationdate>20210921</creationdate><title>Modeling method for wind-light-fire coupling system frequency response model based on GAN and GRU neural networks</title><author>WANG LEI ; HU BO ; HUANG CONGZHI ; ZHANG JIANHUA ; WANG YONGYUE ; WANG SHUNJIANG ; LI HONGRUI ; LI BIN ; HOU GUOLIAN ; ZHOU GUIPING</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN113420492A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>WANG LEI</creatorcontrib><creatorcontrib>HU BO</creatorcontrib><creatorcontrib>HUANG CONGZHI</creatorcontrib><creatorcontrib>ZHANG JIANHUA</creatorcontrib><creatorcontrib>WANG YONGYUE</creatorcontrib><creatorcontrib>WANG SHUNJIANG</creatorcontrib><creatorcontrib>LI HONGRUI</creatorcontrib><creatorcontrib>LI BIN</creatorcontrib><creatorcontrib>HOU GUOLIAN</creatorcontrib><creatorcontrib>ZHOU GUIPING</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WANG LEI</au><au>HU BO</au><au>HUANG CONGZHI</au><au>ZHANG JIANHUA</au><au>WANG YONGYUE</au><au>WANG SHUNJIANG</au><au>LI HONGRUI</au><au>LI BIN</au><au>HOU GUOLIAN</au><au>ZHOU GUIPING</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Modeling method for wind-light-fire coupling system frequency response model based on GAN and GRU neural networks</title><date>2021-09-21</date><risdate>2021</risdate><abstract>The invention aims to provide a modeling method of a system frequency response model based on a generative adversarial network (GAN) and a gate cycle unit (GRU) neural network, aiming at complex dynamic characteristics such as time varying, nonlinearity, uncertainty, intermittency and the like of a wind-light-fire coupling system, and discloses a modeling method of a system frequency response model based on the GAN and the GRU neural network. The generative adversarial network is utilized to solve the problem that training samples are deficient in the building process of the system frequency response model based on data driving. In addition, the problem that an existing modeling method cannot accurately describe nonlinearity, uncertainty and the like of system frequency response is solved by utilizing a gate circulation unit neural network. 本发明的目的是针对风光火耦合系统时变、非线性、不确定性、间歇性等复杂的动态特性,提出了一种基于生成对抗网络(GenerativeAdversarial Networks,GAN)与门循环单元(Gate Recurrent Unit,GRU)神经网络的系统频率响应模型建模方法。利用生成对抗网络解决了基于数据驱动的系统频率响应模型建立过程中训练</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN113420492A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Modeling method for wind-light-fire coupling system frequency response model based on GAN and GRU neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A24%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WANG%20LEI&rft.date=2021-09-21&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN113420492A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true