Distribution network line fault diagnosis method and device considering man-machine-object cooperation
The invention discloses a distribution network line fault diagnosis method and device considering man-machine-object cooperation. The method comprises the steps of obtaining a current unmanned aerial vehicle return image and current distribution line return data; comparing the returned image with a...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | LUO XIANLIN KUANG JIANDONG GE YANG CHEN JIAPENG WANG WEIQUAN ZHANG YINCUI |
description | The invention discloses a distribution network line fault diagnosis method and device considering man-machine-object cooperation. The method comprises the steps of obtaining a current unmanned aerial vehicle return image and current distribution line return data; comparing the returned image with a historical non-fault image in a deep belief network; and if the current distribution line return data and the historical data of the distribution line fault information are different, clustering the current distribution line return data and the historical data of the distribution line fault information, and judging the fault type corresponding to the current distribution line return data. The method can effectively improve the diagnosis precision and speed, rapidly judges the specific fault of the distribution line, optimizes the fault analysis process, and improves the regional power supply reliability.
本申请公开了一种考虑人机物协同的配网线路故障诊断方法及装置,方法包括:获取当前无人机回传图像以及当前配电线路回传数据;将回传图像与历史非故障图像在深度信念网络中进行比对;若比对不相同,则将当前配电线路回传数据以及配电线路故障 |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN113419140A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN113419140A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN113419140A3</originalsourceid><addsrcrecordid>eNqNjTEOgkAQRWksjHqH8QAkbqCxNKixsrInw-4Ag8sM2V30-mLiAax-8d9_f521Z44pcDMnVgGh9NbwBM9C0OLsEzjGTjRyhJFSrw5QHDh6sSWwKpEdBZYORpR8RNsvy1ybgWxaap0o4Ne8zVYt-ki7X26y_fXyqG45TVpTnNDS8l1Xd2OK0hxNeTgV_zAf4FdASg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Distribution network line fault diagnosis method and device considering man-machine-object cooperation</title><source>esp@cenet</source><creator>LUO XIANLIN ; KUANG JIANDONG ; GE YANG ; CHEN JIAPENG ; WANG WEIQUAN ; ZHANG YINCUI</creator><creatorcontrib>LUO XIANLIN ; KUANG JIANDONG ; GE YANG ; CHEN JIAPENG ; WANG WEIQUAN ; ZHANG YINCUI</creatorcontrib><description>The invention discloses a distribution network line fault diagnosis method and device considering man-machine-object cooperation. The method comprises the steps of obtaining a current unmanned aerial vehicle return image and current distribution line return data; comparing the returned image with a historical non-fault image in a deep belief network; and if the current distribution line return data and the historical data of the distribution line fault information are different, clustering the current distribution line return data and the historical data of the distribution line fault information, and judging the fault type corresponding to the current distribution line return data. The method can effectively improve the diagnosis precision and speed, rapidly judges the specific fault of the distribution line, optimizes the fault analysis process, and improves the regional power supply reliability.
本申请公开了一种考虑人机物协同的配网线路故障诊断方法及装置,方法包括:获取当前无人机回传图像以及当前配电线路回传数据;将回传图像与历史非故障图像在深度信念网络中进行比对;若比对不相同,则将当前配电线路回传数据以及配电线路故障</description><language>chi ; eng</language><subject>MEASURING ; MEASURING ELECTRIC VARIABLES ; MEASURING MAGNETIC VARIABLES ; PHYSICS ; TESTING</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210921&DB=EPODOC&CC=CN&NR=113419140A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76419</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210921&DB=EPODOC&CC=CN&NR=113419140A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LUO XIANLIN</creatorcontrib><creatorcontrib>KUANG JIANDONG</creatorcontrib><creatorcontrib>GE YANG</creatorcontrib><creatorcontrib>CHEN JIAPENG</creatorcontrib><creatorcontrib>WANG WEIQUAN</creatorcontrib><creatorcontrib>ZHANG YINCUI</creatorcontrib><title>Distribution network line fault diagnosis method and device considering man-machine-object cooperation</title><description>The invention discloses a distribution network line fault diagnosis method and device considering man-machine-object cooperation. The method comprises the steps of obtaining a current unmanned aerial vehicle return image and current distribution line return data; comparing the returned image with a historical non-fault image in a deep belief network; and if the current distribution line return data and the historical data of the distribution line fault information are different, clustering the current distribution line return data and the historical data of the distribution line fault information, and judging the fault type corresponding to the current distribution line return data. The method can effectively improve the diagnosis precision and speed, rapidly judges the specific fault of the distribution line, optimizes the fault analysis process, and improves the regional power supply reliability.
本申请公开了一种考虑人机物协同的配网线路故障诊断方法及装置,方法包括:获取当前无人机回传图像以及当前配电线路回传数据;将回传图像与历史非故障图像在深度信念网络中进行比对;若比对不相同,则将当前配电线路回传数据以及配电线路故障</description><subject>MEASURING</subject><subject>MEASURING ELECTRIC VARIABLES</subject><subject>MEASURING MAGNETIC VARIABLES</subject><subject>PHYSICS</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjTEOgkAQRWksjHqH8QAkbqCxNKixsrInw-4Ag8sM2V30-mLiAax-8d9_f521Z44pcDMnVgGh9NbwBM9C0OLsEzjGTjRyhJFSrw5QHDh6sSWwKpEdBZYORpR8RNsvy1ybgWxaap0o4Ne8zVYt-ki7X26y_fXyqG45TVpTnNDS8l1Xd2OK0hxNeTgV_zAf4FdASg</recordid><startdate>20210921</startdate><enddate>20210921</enddate><creator>LUO XIANLIN</creator><creator>KUANG JIANDONG</creator><creator>GE YANG</creator><creator>CHEN JIAPENG</creator><creator>WANG WEIQUAN</creator><creator>ZHANG YINCUI</creator><scope>EVB</scope></search><sort><creationdate>20210921</creationdate><title>Distribution network line fault diagnosis method and device considering man-machine-object cooperation</title><author>LUO XIANLIN ; KUANG JIANDONG ; GE YANG ; CHEN JIAPENG ; WANG WEIQUAN ; ZHANG YINCUI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN113419140A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>MEASURING</topic><topic>MEASURING ELECTRIC VARIABLES</topic><topic>MEASURING MAGNETIC VARIABLES</topic><topic>PHYSICS</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>LUO XIANLIN</creatorcontrib><creatorcontrib>KUANG JIANDONG</creatorcontrib><creatorcontrib>GE YANG</creatorcontrib><creatorcontrib>CHEN JIAPENG</creatorcontrib><creatorcontrib>WANG WEIQUAN</creatorcontrib><creatorcontrib>ZHANG YINCUI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LUO XIANLIN</au><au>KUANG JIANDONG</au><au>GE YANG</au><au>CHEN JIAPENG</au><au>WANG WEIQUAN</au><au>ZHANG YINCUI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Distribution network line fault diagnosis method and device considering man-machine-object cooperation</title><date>2021-09-21</date><risdate>2021</risdate><abstract>The invention discloses a distribution network line fault diagnosis method and device considering man-machine-object cooperation. The method comprises the steps of obtaining a current unmanned aerial vehicle return image and current distribution line return data; comparing the returned image with a historical non-fault image in a deep belief network; and if the current distribution line return data and the historical data of the distribution line fault information are different, clustering the current distribution line return data and the historical data of the distribution line fault information, and judging the fault type corresponding to the current distribution line return data. The method can effectively improve the diagnosis precision and speed, rapidly judges the specific fault of the distribution line, optimizes the fault analysis process, and improves the regional power supply reliability.
本申请公开了一种考虑人机物协同的配网线路故障诊断方法及装置,方法包括:获取当前无人机回传图像以及当前配电线路回传数据;将回传图像与历史非故障图像在深度信念网络中进行比对;若比对不相同,则将当前配电线路回传数据以及配电线路故障</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN113419140A |
source | esp@cenet |
subjects | MEASURING MEASURING ELECTRIC VARIABLES MEASURING MAGNETIC VARIABLES PHYSICS TESTING |
title | Distribution network line fault diagnosis method and device considering man-machine-object cooperation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A52%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LUO%20XIANLIN&rft.date=2021-09-21&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN113419140A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |