BP-PMBM filtering algorithm-based multi-target tracking method

The invention discloses a BP-PMBM filtering algorithm-based multi-target tracking method. The method comprises the following steps of: (1) initializing an algorithm; (2) predicting a target state; (3) updating the target state; (4) trimming the Poisson component and the MBM component in the target s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: HE YUQI, LI QINLEI, CHAI JIABO, SONG LIPING, XING TIANPENG, WANG FEIFEI, LIU HAONAN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator HE YUQI
LI QINLEI
CHAI JIABO
SONG LIPING
XING TIANPENG
WANG FEIFEI
LIU HAONAN
description The invention discloses a BP-PMBM filtering algorithm-based multi-target tracking method. The method comprises the following steps of: (1) initializing an algorithm; (2) predicting a target state; (3) updating the target state; (4) trimming the Poisson component and the MBM component in the target state; (5) carrying out box particle re-sampling on the Poisson component and the MBM component; (6) estimating the target state to obtain a global target state estimation value. The BP-PMBM filtering algorithm-based multi-target tracking method provided by the invention has the advantages of high tracking precision, high operation speed, capability of distinguishing tracks and the like. 本发明公开了一种基于BP-PMBM滤波算法的多目标跟踪方法,包括:(1)初始化算法;(2)对目标状态进行预测;(3)更新所述目标状态;(4)对所述目标状态中的Poisson分量和MBM分量进行修剪;(5)对所述Poisson分量和所述MBM分量进行箱粒子重采样;(6)对所述目标状态进行估计,得到全局目标状态估计值。本发明提供的基于BP-PMBM滤波算法的多目标跟踪方法具有跟踪精度高、运算速度快、可区分航迹等优点。
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN113409363A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN113409363A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN113409363A3</originalsourceid><addsrcrecordid>eNrjZLBzCtAN8HXyVUjLzClJLcrMS1dIzEnPL8osycjVTUosTk1RyC3NKcnULUksSk8tUSgpSkzOBqnKTS3JyE_hYWBNS8wpTuWF0twMim6uIc4euqkF-fGpxQWJyal5qSXxzn6GhsYmBpbGZsaOxsSoAQAMDDAW</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>BP-PMBM filtering algorithm-based multi-target tracking method</title><source>esp@cenet</source><creator>HE YUQI ; LI QINLEI ; CHAI JIABO ; SONG LIPING ; XING TIANPENG ; WANG FEIFEI ; LIU HAONAN</creator><creatorcontrib>HE YUQI ; LI QINLEI ; CHAI JIABO ; SONG LIPING ; XING TIANPENG ; WANG FEIFEI ; LIU HAONAN</creatorcontrib><description>The invention discloses a BP-PMBM filtering algorithm-based multi-target tracking method. The method comprises the following steps of: (1) initializing an algorithm; (2) predicting a target state; (3) updating the target state; (4) trimming the Poisson component and the MBM component in the target state; (5) carrying out box particle re-sampling on the Poisson component and the MBM component; (6) estimating the target state to obtain a global target state estimation value. The BP-PMBM filtering algorithm-based multi-target tracking method provided by the invention has the advantages of high tracking precision, high operation speed, capability of distinguishing tracks and the like. 本发明公开了一种基于BP-PMBM滤波算法的多目标跟踪方法,包括:(1)初始化算法;(2)对目标状态进行预测;(3)更新所述目标状态;(4)对所述目标状态中的Poisson分量和MBM分量进行修剪;(5)对所述Poisson分量和所述MBM分量进行箱粒子重采样;(6)对所述目标状态进行估计,得到全局目标状态估计值。本发明提供的基于BP-PMBM滤波算法的多目标跟踪方法具有跟踪精度高、运算速度快、可区分航迹等优点。</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210917&amp;DB=EPODOC&amp;CC=CN&amp;NR=113409363A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210917&amp;DB=EPODOC&amp;CC=CN&amp;NR=113409363A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>HE YUQI</creatorcontrib><creatorcontrib>LI QINLEI</creatorcontrib><creatorcontrib>CHAI JIABO</creatorcontrib><creatorcontrib>SONG LIPING</creatorcontrib><creatorcontrib>XING TIANPENG</creatorcontrib><creatorcontrib>WANG FEIFEI</creatorcontrib><creatorcontrib>LIU HAONAN</creatorcontrib><title>BP-PMBM filtering algorithm-based multi-target tracking method</title><description>The invention discloses a BP-PMBM filtering algorithm-based multi-target tracking method. The method comprises the following steps of: (1) initializing an algorithm; (2) predicting a target state; (3) updating the target state; (4) trimming the Poisson component and the MBM component in the target state; (5) carrying out box particle re-sampling on the Poisson component and the MBM component; (6) estimating the target state to obtain a global target state estimation value. The BP-PMBM filtering algorithm-based multi-target tracking method provided by the invention has the advantages of high tracking precision, high operation speed, capability of distinguishing tracks and the like. 本发明公开了一种基于BP-PMBM滤波算法的多目标跟踪方法,包括:(1)初始化算法;(2)对目标状态进行预测;(3)更新所述目标状态;(4)对所述目标状态中的Poisson分量和MBM分量进行修剪;(5)对所述Poisson分量和所述MBM分量进行箱粒子重采样;(6)对所述目标状态进行估计,得到全局目标状态估计值。本发明提供的基于BP-PMBM滤波算法的多目标跟踪方法具有跟踪精度高、运算速度快、可区分航迹等优点。</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLBzCtAN8HXyVUjLzClJLcrMS1dIzEnPL8osycjVTUosTk1RyC3NKcnULUksSk8tUSgpSkzOBqnKTS3JyE_hYWBNS8wpTuWF0twMim6uIc4euqkF-fGpxQWJyal5qSXxzn6GhsYmBpbGZsaOxsSoAQAMDDAW</recordid><startdate>20210917</startdate><enddate>20210917</enddate><creator>HE YUQI</creator><creator>LI QINLEI</creator><creator>CHAI JIABO</creator><creator>SONG LIPING</creator><creator>XING TIANPENG</creator><creator>WANG FEIFEI</creator><creator>LIU HAONAN</creator><scope>EVB</scope></search><sort><creationdate>20210917</creationdate><title>BP-PMBM filtering algorithm-based multi-target tracking method</title><author>HE YUQI ; LI QINLEI ; CHAI JIABO ; SONG LIPING ; XING TIANPENG ; WANG FEIFEI ; LIU HAONAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN113409363A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>HE YUQI</creatorcontrib><creatorcontrib>LI QINLEI</creatorcontrib><creatorcontrib>CHAI JIABO</creatorcontrib><creatorcontrib>SONG LIPING</creatorcontrib><creatorcontrib>XING TIANPENG</creatorcontrib><creatorcontrib>WANG FEIFEI</creatorcontrib><creatorcontrib>LIU HAONAN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>HE YUQI</au><au>LI QINLEI</au><au>CHAI JIABO</au><au>SONG LIPING</au><au>XING TIANPENG</au><au>WANG FEIFEI</au><au>LIU HAONAN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>BP-PMBM filtering algorithm-based multi-target tracking method</title><date>2021-09-17</date><risdate>2021</risdate><abstract>The invention discloses a BP-PMBM filtering algorithm-based multi-target tracking method. The method comprises the following steps of: (1) initializing an algorithm; (2) predicting a target state; (3) updating the target state; (4) trimming the Poisson component and the MBM component in the target state; (5) carrying out box particle re-sampling on the Poisson component and the MBM component; (6) estimating the target state to obtain a global target state estimation value. The BP-PMBM filtering algorithm-based multi-target tracking method provided by the invention has the advantages of high tracking precision, high operation speed, capability of distinguishing tracks and the like. 本发明公开了一种基于BP-PMBM滤波算法的多目标跟踪方法,包括:(1)初始化算法;(2)对目标状态进行预测;(3)更新所述目标状态;(4)对所述目标状态中的Poisson分量和MBM分量进行修剪;(5)对所述Poisson分量和所述MBM分量进行箱粒子重采样;(6)对所述目标状态进行估计,得到全局目标状态估计值。本发明提供的基于BP-PMBM滤波算法的多目标跟踪方法具有跟踪精度高、运算速度快、可区分航迹等优点。</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN113409363A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title BP-PMBM filtering algorithm-based multi-target tracking method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T09%3A45%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=HE%20YUQI&rft.date=2021-09-17&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN113409363A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true